freestuff.gr αρχική σελίδα
 FAQFAQ    ΑναζήτησηΑναζήτηση   Λίστα ΜελώνΛίστα Μελών   Ομάδες ΜελώνΟμάδες Μελών   <b>Εγγραφή Μέλους</b>Εγγραφή Μέλους 
 ΠροφίλΠροφίλ   Επιλογές μέλους Επιλογές   Τα bookmarks μου Τα bookmarks μου   Προσωπικά μηνύματαΠροσωπικά μηνύματα 
  διαφήμιση  

Καλώς ήρθατε στο forum μας! Για να συμμετάσχετε στις συζητήσεις θα πρέπει να είσαστε μέλος. Γίνετε μέλος τώρα!.

Αντισεισμική εφεύρεση του seismic Σχόλια-συνεργασία


 Forum index » Η/Υ, Τεχνολογία & Εφαρμογές » Internet, πλοήγηση, συνδέσεις και τηλεφωνία » Σας παρουσιάζω την σελίδα μου
Moderators:  Super-Moderators
Εισαγωγή νέου Θέματος   Απάντηση στο Θέμα Σελίδα 5 από 8 [111 Μηνύματα]      Bookmarks Tags: seismicιστοσελίδα Mark the topic unread :: Προηγούμενο θέμα :: Επόμενο θέμα
Σελίδα:  Προηγούμενο  1, 2, 3, 4, 5, 6, 7, 8 Επόμενο
ΑποστολέαςΜήνυμα
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 06 Μαρ 2010 01:11    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Φίλοι μου. Η ευρεσιτεχνία πέρασε την έκθεση έρευνας στην Ελλάδα,(μετά από έρευνα σε όλο τον κόσμο) με το γράμμα ( Α )
Αυτό σημαίνει δύο πράγματα.
α) Ότι έχει μεγάλο τεχνολογικό ενδιαφέρον.
β) Ότι δεν υπάρχει στον κόσμο ολόκληρο, ούτε μηχανισμός, ούτε μέθοδος σαν αυτή.
Έτσι δεν μπορεί να την προσβάλει άλλη ευρεσιτεχνία, και πάει για Διεθνή δίπλωμα, αφού έχω καταβάλει τα έγραφα, και τα τέλει.
Αυτά για την ευρεσιτεχνία του παρακάτω βίντεο.
Υπάρχει βέβαια και η ευρεσιτεχνία του ελκυστήρα δομικών έργων η οποία έχει περάσει την Διεθνή έκθεση έρευνας (pct) με το γράμμα (Υ)

ΝΕΟ VIDEO ΤΗΣ ΕΥΡΕΣΙΤΕΧΝΙΑΣ http://www.youtube.com/watch?v=23RMfo2wD7s
ΝΕΑ ΙΣΤΟΣΕΛΙΔΑ http://www.antiseismic-systems.com/

Έχω γράψει για την ευρεσιτεχνία και εδώ, σαν seismic. http://forum.skyscraperpage.com/forumdisplay.php?f=53

Και κάτι ακόμα που είναι απαράδεκτο για μένα, είναι το εξής.
Σας είχα υποσχεθεί, ότι όταν είχα αποτελέσματα από την προσομοίωση της ευρεσιτεχνίας σε Η/Υ θα σας τα έδειχνα.
Δυστυχώς αυτό δεν θα γίνει σύντομα, για τους παρακάτω λόγους.
α) Στο Πανεπιστήμιο της Πάτρας μυστηριωδώς έχασα κάθε επαφή.
β) Έχω πει εδώ και ένα μήνα στις αντιπροσωπίες της strad, Ansys, Sap2000 να μου δώσουν προσφορά για προσομοίωση, και με αποφεύγουν συστηματικά, παρά την αρχική υπόσχεσή τους. Φυσικά όλα αυτά επί πληρωμή δική μου.
Τι μπορώ να κάνω πια?
Γίνετε τελικά προσομοίωση της ευρεσιτεχνίας σε Η/Υ ?
Αν ναι, γιατί δεν την κάνουν?



mechanism000001 (1).bmp
 Description:
 Filesize:  900.05 KB
 Viewed:  432 Time(s)

mechanism000001 (1).bmp



001.jpg
 Description:
 Filesize:  349.03 KB
 Viewed:  480 Time(s)

001.jpg



_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 12 Μαρ 2010 08:13    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

ΤΕΛΙΚΟ ΒΙΝΤΕΟ ΤΗΣ ΑΝΤΙΣΕΙΣΜΙΚΉΣ ΕΥΡΕΣΙΤΕΧΝΙΑΣ ΜΕ ΑΓΓΛΙΚΗ ΟΜΙΛΙΑ

http://www.youtube.com/watch?v=KPaNZcHBKRI

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 11 Ιουλ 2010 19:32    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Χρήσιμες φωτογραφίες τού υδραυλικού ελκυστήρα.

Πρώτη μέθοδος τοποθέτησης του υδραυλικού ελκυστήρα, ώστε να προσφέρουμε σεισμική μόνωση στον οριζόντιο και κάθετο άξονα του κτηρίου.
http://www.postimage.org/image.php?v=PqdfyhS

ΔΏΜΑ
http://www.postimage.org/image.php?v=gxKi2JJ
ΒΆΣΗ ΦΡΕΑΤΊΟΥ ΚΆΤΩ ΑΠΟ ΤΟ ΈΔΑΦΟΣ ΜΕ ΤΟΝ ΜΗΧΑΝΙΣΜΌ ΤΗΣ ΆΓΚΥΡΑΣ ΣΤΗΝ ΓΕΩΤΡΊΣΗ
http://www.postimage.org/image.php?v=PqdfPKS
ΜΗΧΑΝΙΣΜΌΣ ΥΔΡΑΥΛΙΚΟΥ ΕΛΚΥΣΤΉΡΑ
http://www.postimage.org/image.php?v=Pqdg6cS
http://www.postimage.org/image.php?v=PqdgiGA

ΔΕΎΤΕΡΗ ΜΈΘΟΔΟΣ ΤΟΠΟΘΈΤΗΣΗΣ ΤΟΥ ΥΔΡΑΥΛΙΚΟΥ ΕΛΚΥΣΤΉΡΑ
http://www.postimage.org/image.php?v=PqdjPGi

ΒΙΝΤΕΟ ΕΥΡΕΣΙΤΕΧΝΊΑΣ http://www.youtube.com/watch?v=KPaNZcHBKRI&feature=player_embedded

ΜΙΑ ΑΛΛΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΔΟΜΟΣΤΑΤΙΚΉΣ
ΥΔΡΑΥΛΙΚΟΣ ΕΛΚΥΣΤΗΡΑΣ ΔΟΜΙΚΩΝ ΕΡΓΩΝ
Ο υδραυλικός ελκυστήρας δομικών έργων της εφεύρεσής μας καθώς και η μέθοδος εφαρμογής του στην κατασκευή δομικών έργων έχουν ως κύριο σκοπό την ελαχιστοποίηση των προβλημάτων που σχετίζονται με την ασφάλεια των δομικών κατασκευών στην περίπτωση αντιμετώπισης φυσικών φαινομένων όπως είναι ο σεισμός, οι ανεμοστρόβιλοι και οι πολύ ισχυροί άνεμοι. Σύμφωνα με την εφεύρεση, αυτό επιτυγχάνεται με μια συνεχή προένταση, (έλξη) του δώματος ενός μεγάλου ανεξάρτητου από τον φέροντα γεωμετρικού τμήματος της δομικής κατασκευής, προς το έδαφος, και του εδάφους προς την κατασκευή, κάνοντας αυτά τα δύο μέρη ένα σώμα «σάντουιτς».
Αυτή τη δύναμη προέντασης την εφαρμόζει ο μηχανισμός του υδραυλικού ελκυστήρα δομικών έργων, ο οποίος κατά κύριο λόγο αποτελείται από ένα συρματόσχοινο που διαπερνά ελεύθερο στο κέντρο τα κάθετα στοιχεία στήριξης της δομικής κατασκευής, καθώς και το μήκος μιας γεώτρησης, κάτω απ’ αυτά. Στο κάτω άκρο του το συρματόσχοινο είναι πακτωμένο με ένα μηχανισμό τύπου άγκυρας που με τη σειρά του πακτώνεται στα πρανή της γεώτρησης και δεν μπορεί να ανέλθει. Αυτή η πάκτωση γίνεται γιατί η οπή της γεώτρησης είναι κατά κάτι μικρότερη από την πλήρως ανοιγμένη εξωτερική διάμετρο του μηχανισμού της άγκυρας. Στο επάνω μέρος του, το συρματόσχοινο, είναι πάλι πακτωμένο με ένα υδραυλικό μηχανισμό έλξης ο οποίος το έλκει με μία συνεχή δύναμη ανόδου. Αυτός ο μηχανισμός έλξης αποτελείται από ένα έμβολο, το οποίο ολισθαίνει σε ένα χιτώνιο, που έχει από κάτω του, ένα θάλαμο πιέσεως. Η ασκούμενη στο συρματόσχοινο έλξη στο επάνω άκρο του από τον υδραυλικό μηχανισμό λόγω της υδραυλικής πιέσεως ανόδου του θαλάμου προς το έμβολο, και η αντίδραση σ’ αυτήν την έλξη που προέρχεται από την πακτωμένη άγκυρα στο άλλο άκρο του γεννά την επιθυμητή θλίψη στο δομικό έργο, το οποίο πακτώνεται στο έδαφος, ώστε να έχει αντοχή στις οριζόντιες δυνάμεις του σεισμού.

ΠΡΩΤΗ ΜΈΘΟΔΟΣ ΤΟΠΟΘΕΤΗΣΗΣ
Βίντεο ευρεσιτεχνίας που δείχνει τον τρόπο και την μέθοδο συνεργασίας του συστήματος, με εφέδρανα, για την αποτελεσματική σεισμική μόνωση του κάθετου, αλλά και του οριζόντιου άξονα της κατασκευής, ώστε να αποφεύγονται στο μέγιστο η επισκευές μετά τον σεισμό.
http://www.youtube.com/watch?v=KPaNZcHBKRI&feature=player_embedded







ΔΕΥΤΕΡΗ ΜΕΘΟΔΟΣ ΤΟΠΟΘΕΤΗΣΗΣ
Υπάρχει και μία άλλη μέθοδος τοποθέτησης του υδραυλικού ελκυστήρα στις δομικές κατασκευές.
Αυτή η μέθοδος δεν περιλαμβάνει οριζόντια σεισμική μόνωση.
http://www.postimage.org/image.php?v=PqdjPGi
Ούτε εφέδρανα.
Ούτε διάκενα.
Απλώς μετατρέπουμε μέρος της εσωτερικής οπτοπλινθοδομής ενός κτηρίου σε τοιχία ΟΣ ( Οπλισμένου Σκυροδέματος ) τα οποία έχουν την ίδια συνέχεια σε όλους τους ορόφους, και τους εφαρμόζουμε σε καίρια σημεία μικρή προένταση μεταξύ γεώτρησης και δώματος.

Τι πετυχαίνουμε με αυτή την μέθοδο.
α) Αν ένας σκελετός οικοδομής πάρει μια κλίση μερικών μοιρών, λόγο ταλάντωσης που θα του προκαλέσει ο σεισμός, οι γωνίες των κόμβων του σκελετού έχουν την δυνατότητα να παραμείνουν σε γωνία 90 μοιρών?
Φυσικά και όχι
Γιατί όχι?
Γιατί απλά ο σκελετός έχει στατικά φορτία, τα οποία κατά την ταλάντωση καλούνται να τα παραλάβουν οι κόμβοι. Αυτοί δεν μπορούν να τα παραλάβουν, οπότε η γωνίες αλλάζουν σχήμα, και από ορθές γίνονται άλλες μικρότερες και άλλες μεγαλύτερες.
Αποτέλεσμα είναι να γίνονται στους κόμβους λοξές ρωγμές, ή αλλιώς λοξά τόξα.
Αν οι κόμβοι άντεχαν τα στατικά φορτία, οπότε παρέμεναν ορθές γωνίες 90 μοιρών,η λογική λέει ότι οι μπροστινές κολώνες έπρεπε να σηκώνουν στον αέρα τις πίσω κολώνες, και ούτω καθ εξής εναλλάξ, κατά την ταλάντωση.
Αυτό όμως είναι αδύνατο, γιατί ο φέρον είναι γεμάτος από κόμβους, και στατικά φορτία

β) Αν η ταλάντωση δημιουργεί τα άνω προβλήματα στους κόμβους, δεν θα ήταν καλό να την σταματήσουμε?
Αν ναι,.... πως μπορούμε να το κάνουμε αυτό?

γ) Η να δέσουμε την οικοδομή τριγύρω με συρματόσχοινα υπό κλίση 45 μοιρών και αγκυρώσεις, (πράγμα αδύνατον ) ή να πάρουμε τμήματα της οικοδομής, Π.Χ εσωτερική τοιχοποιία, να τους αλλάξουμε δομή σε τοιχοποιία Ο.Σ, να τα ακρυρώσουμε με το έδαφος σε κατάλληλα σημεία, ώστε αυτά να σταματούν την ταλάντωση φέρνοντας αντίσταση στην κορυφή, και στο Π της κάτοψις, και της βάσης.

Γιατί προτείνω να μετατρέπουμε (την εσωτερική οπτοπλινθοδομή σε τοιχία ΟΣ) και να αγκυρώνουμε τα εσωτερικά τοιχία Ο.Σ με το έδαφος?
Για τους εξής λόγους.
α)Για να αφήνουμε στα εξωτερικά πόρτες και παράθυρα, ή τζαμαρίες.

β)Διότι τα εσωτερικά τοιχώματα έχουν εκ αρχιτεκτονικής φύσις, σταυροειδή μορφή, και αυτή η μορφή διαστασιολόγισης φέρνει μεγαλύτερη αντίσταση στον σεισμό, από όποια κατεύθυνση και αν έλθει.

γ)Διότι καλουπώνονται και ξεκαλουπώνονται εύκολα.

δ) Διότι διαστασιολογικά είναι ικανά να παραλάβουν τις καμπτηκές τάσεις

ε) Διότι έχουν μεγάλη διαστασιολόγιση κάτοψης, και είναι ικανά να φέρνουν μεγάλη αντίσταση στο δώμα, και στο Π της κάτοψης.


Στα παρακάτω σχήματα κάτοψης, δείχνω την μετατροπή της οπτοπλινθοδομής σε ΟΣ, καθώς και τα σημεία αγκύρωσης, ώστε να σταματήσουμε την ταλάντωση του φέροντα, η οποία καταπονεί τους κόμβους της κατασκευής, δημιουργώντας τις λοξές ρογμές.
http://www.postimage.org/image.php?v=PqdjPGi


Τοποθέτηση σε υποβρύχιους δρόμους http://www.postimage.org/image.php?v=Pqdi7q9


Τοποθέτηση σε συνεχή δόμηση οπτοπλινθοδομής. http://www.postimage.org/image.php?v=PqdhLYS


Τοποθέτηση σε υφιστάμενα, και ξύλινες οικίες για προστασία από τον σεισμό και τους ανεμοστρόβιλους.

http://www.postimage.org/image.php?v=PqdgP6r



Μπορεί να τοποθετηθεί και σε πυλώνες γεφυρών, κάτω από τα εφέδρανα, και σε φράγματα κ.λ.π

Πως σταματάμε την ταλάντωση του φέροντα.
Εφαρμόζοντας προένταση με τον μηχανισμό του υδραυλικού ελκυστήρα,μεταξύ γεώτρησης, και κορυφής δώματος, μέσα από τα κάθετα στοιχεία στήριξης.
Αυτή η προένταση, συν του ότι βελτιώνει τις αντοχές του στοιχείου στην διάτμηση,,έχει ένα άλλο πρόσθετο καλό.
Κατά τις αδρανειακές εντάσεις του φέροντα στον σεισμό, επέρχετε ταλάντωση.
Τότε στο κάθετο προτεταμένο στοιχείο στήριξης, εμφανίζονται δύο αντίθετες δυνάμοις αντίδρασης . Η μία στο δώμα, και η άλλη στο Π της διατομής της κάτοψης, και της βάσης του, ως αντίδραση στην ταλάντωση. Τότε μέσα στο σώμα του κάθετου στοιχείου στήριξης, υφίσταται κατακόρυφες διατμητικές αντιδράσεις, ως αντίσταση κατά του σεισμού.
Αυτή η αντίσταση του στοιχείου είναι ένα + στην υπάρχουσα αντίσταση των κόμβων, έναντι των καταστροφικών δυνάμεων του σεισμού.
Μπορούμε να εξασκήσουμε με δύο τρόπους προένταση στα κάθετα στοιχεία.
α) Την κανονική προένταση ή β)την ελεγχόμενη μικρή προένταση.
Αν αντέχουν τα προτεταμένα στοιχεία τις τάσεις, εφαρμόζουμε την κανονική προένταση.

Αν δεν αντέχουν τις τάσεις εφαρμόζουμε την ελεγχόμενη προένταση.



Δηλαδή να εφαρμοστεί μεγάλη προένταση αρχικά,
την στιγμή που έχουμε βυθίσει τον ελκυστήρα στην γεώτρηση, πριν την κατασκευή του φέροντα.

Και μετά.

Αφού πακτώσουμε το συρματόσχοινο με μία σφήνα στο επίπεδο του χώματος της βάσης, γεμίζουμε με σκυρόδεμα την γεώτρηση, κατασκευάζοντας ένα πάσσαλο

Κατόπι συνεχίζουμε την κατασκευή, και όταν τελειώσει ο φέροντας, κάνουμε μία απλή προένταση δώματος, και βάσης.

Δηλαδή το ίδιο συρματόσχοινο θα δέχεται δύο προεντάσεις.

Μία αρχικός μεταξύ εδάφους επιφανείας και άγκυρας, και μία μεταξύ βάσης και δώματος, με διαφορετικές τιμές τάσης.

Κατ αυτόν τον τρόπο θα έχουμε και άλλα καλά, όπως,
την συμπύκνωση του εδάφους,( Πριν την κατασκευή του πασσάλου,) την προστασία του μηχανισμού από την σκουριά, την αποφυγή της εξαγωγής του νερού που πιθανόν να βρεθεί κοντά σε παραθαλάσσιες περιοχές.

Καθώς και την ελεγχόμενη πάκτωση του φέροντα, με όση προένταση ή αγκύρωση χρειαστεί, αφού η προένταση κάτω από την βάση, θα έχει μεγαλύτερη τάση προέντασης, από την μετέπειτα προένταση βάσης δώματος.
__________________
Έρευνα είναι η επεξεργασία του σωστού και του λάθους.

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 11 Ιουλ 2010 19:35    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Γίνετε η προσομοίωση στο Μετσόβιο Πανεπιστήμιο, αλλά δεν έχω ακόμα αποτελέσματα.
Θα εξεταστούν έξι κτήρια με φέροντα οργανισμό από οπλισμένο σκυρόδεμα και
συγκεκριμένα δύο τριώροφα, δύο πενταώροφο και δύο επταώροφα κτήρια. Τα κτήρια
θα είναι είτε κανονικά, είτε θα παρουσιάζουν ακανονικότητα σε κάτοψη ή/και σε τομή,
ενώ το σύστημα προέντασης θα εφαρμοστεί με τρεις δυνατότητες: (α) Στον πυρήνα στο
κέντρο της κατασκευής. (β) Στον πυρήνα σε έκκεντρη θέση σε κάτοψη του κτηρίου, και
(γ) Σε τέσσερα σημεία (υποστυλώματα) στις γωνίες περιμετρικά του κτηρίου.
Θα γίνει μη γραμμική ανάλυση με τη μέθοδο των πεπερασμένων στοιχείων,
λαμβάνοντας υπόψη φαινόμενα μη γραμμικότητας του υλικού καθώς και της
γεωμετρίας. Θα πραγματοποιηθούν μη γραμμικές στατικές και δυναμικές αναλύσεις με
σεισμικές καταγραφές που θα σχετίζονται με τη σεισμικότητα του ελληνικού χώρου.
Πέρα από τις απλές σεισμικές καταγραφές που προέρχονται από σεισμούς που έπληξαν
στο παρελθόν τον ελληνικό χώρο.
Θα εξεταστεί η επιρροή της εφαρμογής του συστήματος τόσο όσον αφορά τη
συμπεριφορά των κτηρίων όσο και όσον αφορά το κόστος κατασκευής τους.


Η ευρεσιτεχνία συνεργάζετε με την οριζόντια σεισμική μόνωση που προσφέρουν τα εφέδρανα, λύνοντας το πρόβλημα της ευστάθειας.

Το κύριο μέλημα όμως του μηχανισμού της ευρεσιτεχνίας, είναι
α) να κάνει ένα σώμα την κατασκευή με το έδαφος, ώστε να πακτώσει και τον τελευταίο ( ασύνδετο ) μέχρι σήμερα κόμβο, ο οποίος υφίσταται μεταξύ εδάφους και βάσεως, και είναι ο κύριος υπεύθυνος για την καταπόνηση των άλλων κόμβων, λόγο του ότι ασύνδετος όπως είναι, επιτρέπει την ταλάντωση του φέροντος, που υφίσταται από τις αδρανειακές εντάσεις, και την αδυναμία των κόμβων αυτού, να παραλάβουν τα στατικά φορτία του.

β) Να μεγαλώσει τις διατμητικές αντοχές των κάθετων στοιχείων, μέσω προέντασης, ώστε αυτά να παραλαμβάνουν τις επιταχύνσεις του σεισμού
γ) Να φέρει αντίσταση στο δώμα και στο Π της βάσεις, ώστε να βοηθήσει τους κόμβους, σταματώντας την ταλάντωση
ε) Να αποτρέψει την κάθετη αστοχία του εδάφους.

Η οριζόντια διαφορά φάσης μεταξύ της βάσης και εδάφους δεν υφίσταται, λόγο του ότι υπάρχει η αντίσταση των πρανών της βάσεως, προς την βάση

Subject: ΠΕΙΡΑΜΑ ΕΥΡΕΣΙΤΕΧΝΙΑΣ Δεύτερη μέθοδος τοποθέτησης.

http://www.postimage.org/image.php?v=PqgqzG9

Εδώ στο κάτω URL φαίνεται ο σκελετός της οικοδομής, και η μετατροπή των μεσαίων χωρισμάτων της οικοδομής, από τοιχοποιία, σε τοιχία οπλισμένου σκυροδέματος.
Ακόμα μπορείτε να δείτε τις βίδες, οι οποίες διαπερνούν το ξύλο, και βιδώνονται πάνω - κάτω.
Ότι κάνει δηλαδή ο ελκυστήρας, και ο υδραυλικός ελκυστήρας, στην κατασκευή.

http://www.postimage.org/image.php?v=PqgqEFr

Εδώ δείχνει τα αυλάκια που έχω κάνει στο ξύλο, για την διέλευση της βίδας, η οποία αντιπροσωπεύει το συρματόσχοινο, το οποίο διαπερνά το οπλισμένο σκυρόδεμα, μέσα από μία πλαστική σωλήνα, για να μην πακτώσει με το οπλισμένο σκυρόδεμα, κατά την ξήρανση του.

http://www.postimage.org/image.php?v=PqgqOE0

Εδώ το χονδρό ξύλο αντιπροσωπεύει το χώμα, και η βίδες τις άγκυρες, μέσα στις γεωτρήσεις.

http://www.postimage.org/image.php?v=PqgqYCA

Εδώ βλέπουμε ένα σκελετό οικοδομής ( φέροντα οργανισμό ) ο οποίος είναι ελαφρύς, και κατά την επιτάχυνση του σεισμού, το ένατου κάτω άκρο, σηκώνει το άλλο του απέναντι, άκρο, λόγο της αδράνειας που έχει το σώμα, στην επιτάχυνση του σεισμού.
Επειδή ο σκελετός είναι ελαφρύς, οι γωνίες (κόμβοι) που σχηματίζονται από τις κολόνες και τα δοκάρια, αντέχουν το ιδικό βάρος τις κατασκευής, για τον λόγο αυτό και δεν λυγίζουν.

http://www.postimage.org/image.php?v=Pqgrmz0

Όταν όμως ο σκελετός είναι από οπλισμένο σκυρόδεμα, και έχει μεγάλο βάρος, τότε κατά την επιτάχυνση του σεισμού, το ένατου άκρο, δεν μπορεί να σηκώσει το άλλο όπως γινόταν όταν ήταν ελαφρύ. ( λόγο στατικού βάρους )
Το αποτέλεσμα είναι να λυγίζουν οι γωνίες, όπως δείχνει η φωτογραφία, 6 και 7, και να σπάνε.

http://www.postimage.org/image.php?v=Pqgru2r

http://www.postimage.org/image.php?v=Pqgrz1J

Στην τελευταία φωτογραφία βλέπουμε τον σκελετό της οικοδομής, με τα προβλήματα που αναφέραμε πιο πάνω ότι αντιμετωπίζει, με ή χωρίς βάρος.
Από πίσω βλέπουμε την βιδωμένη άκαμπτη εσωτερική κατασκευή, η οποία κατά την επιτάχυνση του σεισμού, δεν ταλαντεύεται.
Στο πείραμα, μόλις πέρασα ( φόρεσα από πάνω )τον σκελετό μέσα στην εσωτερική άκαμπτη κατασκευή, αυτός έγινε άκαμπτος, γιατί εύρισκε επάνω της.
Έτσι σταμάτησε η ταλάντωση, η οποία σπάει τους κόμβους και πέφτει η κατασκευή.

http://www.postimage.org/image.php?v=PqgrJ0i

Σίγουρα στην πραγματικότητα, το μέγεθος της κατασκευής θα έχει διαφορετική αδράνεια και άλλες εντάσεις. Εγώ απλώς θέλω να μεταδώσω το σκεπτικό της ευρεσιτεχνίας. Όλα τα άλλα πρέπει να δοκιμαστούν στην πράξη.


Ο συσχετισμός των ποσοτήτων των τάσεων (αν μπορούμε να το δούμε έτσι) "αδρανειακές εντάσεις - δυνάμεις απόσβεσης - ελαστικές δυνάμεις - δυναμικά χαρακτηριστικά κατασκευής - αλληλεπίδραση εδάφους κατασκευής - επιβαλλομενη κίνηση εδάφους" δεν είναι ούτε γραμμικός ούτε και με προφανές αποτέλεσμα. Μένει να τα δούμε, από αποτελέσματα προσομοίωσης και πειραμάτων.?


Αν λάβουμε υπόψη το γεγονός ότι κατά τη διάρκεια ενός σεισμού τόσο η διέγερση όσο και τα δυναμικά χαρακτηριστικά του κτηρίου μεταβάλλονται, τότε δεν είναι τίποτα πια προφανές αληθείς και ευθύ, από την Θεωρία της εν λόγο ευρεσιτεχνίας, για να σταματήσουμε όλα αυτά. Αλλά όπως είπα, είναι θεωρεία.?

Από την άλλη όμως, το συρματόσχοινο αυτό θα δέχεται πολύ λίγες εντάσεις.
Αυτές οι εντάσεις δεν θα έχει πρόβλημα ο φέροντας να τις παραλάβει, αφού θα είναι εντάσεις αντίδρασης ανόδου του κτηρίου,μείον - το βάρος του, και αφού το σκυρόδεμα μπορεί να πάρει το στατικό του βάρος, θα μπορεί άνετα να φέρει και αντίδραση στην άνοδο ( στο δώμα ) της πλευράς του κτηρίου.
Ακόμα αυτή η ανοδική αντίδραση στο δώμα, ελαττώνετε, όσο μικραίνει το ύψος του κτηρίου, και μεγαλώνει το μήκος της βάσης ( αντίδραση πέλματος )
__________________
Έρευνα είναι η επεξεργασία του σωστού και του λάθους.

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 22 Ιουλ 2010 00:48    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Παιδιά, θα ήθελα την γνώμη σας, αν αυτό το σύστημα της ευρεσιτεχνίας, μπορούσε να έχει καλύτερη εφαρμογή και τύχη στα προκατασκευασμένα από σκυρόδεμα.
http://www.postimage.org/image.php?v=PqgqEFr
http://www.postimage.org/image.php?v=PqdjPGi

ΜΙΚΡΟ ΠΕΙΡΑΜΑ ΤΗΣ ΕΥΡΕΣΙΤΕΧΝΊΑΣ
http://www.youtube.com/watch?v=HyAxO1lH5YE

http://www.postimage.org/image.php?v=PqdjPGi

Ακόμα με αυτή την μέθοδο, λόγο προέντασης, και μεγάλης διατομής κάτοψης της εσωτερικής τοιχοποιίας από Ο.Σ,
έχουμε μεγάλες αντοχές στις διατμητικές τάσεις.
Αποτρέπουμε και τα λοξά τόξα ή λοξά κρακ, στους κόμβους, που δημιουργούνται από την ταλάντωση, λόγο αδυναμίας των κόμβων να παραλάβουν τα στατικά φορτία του φέροντος.
__________________
Έρευνα είναι η επεξεργασία του σωστού και του λάθους. Καλό ε!

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 19 Αυγ 2010 22:30    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Το παρακάτω βίντεο δείχνει τα τρία κύματα του σεισμού, τα οποία μεταδίδονται μέσα από το υλικό της Γης, σε διαφορετικές ταχύτητες.

http://www.youtube.com/watch?v=2pfDieIhzxY&feature=related

S AND P WAVES http://www.youtube.com/watch?v=g3VVrD_WQG8&NR=1

LOVE WAVE ΤΟ ΤΕΛΕΥΤΑΊΟ ΚΑΙ ΠΙΟ ΚΑΤΑΣΤΡΟΦΙΚΌ
http://www.youtube.com/watch?v=oMUTDe6LR4o&NR=1

α) Το πρώτο είναι το κύμα ( P )
Αυτό μεταδίδεται με την μεγαλύτερη ταχύτητα,και είναι το πρώτο που κουνάει το σπίτι.
Έρχεται πάντα από κάτω, και δημιουργεί τον τεκτονικό σεισμό μετακινώντας το σπίτι πάνω κάτω.

Κατά την κίνηση αυτή, το σπίτι δέχεται δύο επιταχύνσεις.
Την επιτάχυνση ανόδου, από τον σεισμό, και την επιτάχυνση καθόδου, από τα στατικά φορτία του φέροντος.
Η διαφορά φάσης των δύο αυτών δράσεων, τις κάνει να συγκρούονται μεταξύ τους, αναπτύσσοντας κρουστικές δυνάμεις, που καταπονούν τα κάθετα στοιχεία στήριξης.

Το όφελος της ευρεσιτεχνίας σε αυτή την καταπόνηση του κτηρίου είναι η εξής.
Καταργεί την διαφορά φάσεις, λόγο προέντασης, η οποία αναγκάζει την οικία να ανεβαίνει
και να κατεβαίνει στον ρυθμό των κυμάτων ( P )

Έτσι αποφεύγουμε την κρούση της οικίας με το έδαφος.

β) Κύμα ( S )
Και αυτό έρχεται από κάτω από την οικία, σε διαφορετικό χρόνο, και σε διαφορετική φορά.
Αυτό το κύμα ( S ) δημιουργεί οριζόντια παλινδρόμηση στην οικία, καταπονώντας αυτή με δύο τρόπους.
Πρώτον δημιουργεί διατμητικές τάσεις, προπαντός στον πρώτο όροφο, λόγο ακαμψίας του πρώτου κόμβου της πακτωμένης με το έδαφος βάσης, και της αδράνειας του φέροντος, που έχει διαφορετική φορά δυνάμεων από ότι ο σεισμός.

Δεύτερον δημιουργεί ταλάντωση στην κατασκευή, προπαντός στα ψιλά κτήρια, που βρίσκονται μακριά από το κέντρο του σεισμού.

Κατά την ταλάντωση οι κόμβοι της κατασκευής, δεν αντέχουν να σηκώσουν το βάρος του φέροντα, και μετά από κάποια ελαστικότητα που έχουν, σπάνε.

http://www.postimage.org/image.php?v=Tsm4RK0

Τι κάνει η ευρεσιτεχνία σε αυτό το οριζόντιο παλινδρομικό κύμα ( S )

Σταματάει την ταλάντωση που δημιουργεί τα λοξά βέλη στους κόμβους
έτσι http://www.postimage.org/image.php?v=PqgqEFr

Ακόμα με αυτή την μέθοδο, λόγο προέντασης, και μεγάλης διατομής κάτοψης της εσωτερικής τοιχοποιίας από Ο.Σ,
έχουμε μεγάλες αντοχές στις διατμητικές τάσεις, που δημιουργούνται στους κόμβους
( προπαντός των βάσεων )

γ) Κύμα LOVE http://www.youtube.com/watch?v=oMUTDe6LR4o&NR=1
Αυτό το κύμα είναι το πιο αργό, αλλά και το πιο καταστροφικό από τα άλλα δύο.

Ο κύριος λόγος είναι, ότι είναι επιφανειακό, δημιουργώντας κυματισμό, όπως τον κυματισμό της θάλασσας.

Αν το σπίτι είναι μικρό, ( μέχρι 30 x 30 m ) τότε ανεβαίνει και κατεβαίνει πάνω στο ύψος και το βάθος κύματος του σεισμού.

Αν όμως η κατασκευή είναι μεγαλύτερη αυτών των διαστάσεων, τότε οι κολώνες μετατρέπονται σε έμβολα θραύσεως των κολονών, λόγο διαφορά φάσεως που έχει ο οριζόντιος επιφανειακός κυματισμός.

Τι κάνει η ευρεσιτεχνία για αυτά τα επιφανειακά κύματα LOVE τα οποία καταπονούν την κατασκευή υπό γωνία 45 μοιρών.

Αν η κατασκευή είναι μικρότερη από 30 x 30 m, χρησιμοποιούμε την δεύτερη μέθοδο τοποθέτησης
http://www.postimage.org/image.php?v=PqgqEFr
http://www.postimage.org/image.php?v=PqdjPGi

Για δύο λόγους
Καλύτερη διαστασιολόγιση βάσεων, και μεγαλύτερες διατμητικές αντοχές στον λοξό εφελκυσμό, ο οποίος αναπτύσσεται κυρίως κατά την διάρκεια των κυμάτων LOVE.

Αν η κατασκευή είναι μεγαλύτερη από 30 x 30 m τότε χρησιμοποιούμε την πρώτη μέθοδο τοποθέτησης.

http://www.youtube.com/watch?v=KPaNZcHBKRI&feature=player_embedded

Οι λόγοι είναι οι εξής.
Πρώτον η διπλή κητοστρωση, κατά προτίμηση προτεταμένη, μετατρέπει την βάση του κτηρίου σε μονομπλόκ, με αποτέλεσμα την ακαμψία της κητόστρωσης, και της καλύτερη κατανομή των δυνάμεων του σεισμού, κάτωθεν αυτής.
( σαν καρίνα μαούνας στην θάλασσα )

Η κατασκευή όμως αυτή έχει ένα άλλο πρόβλημα.
Την ταλάντωση.
Αυτό το πρόβλημα το λύνουμε τοποθετώντας το ανεξάρτητο προτεταμένο με το έδαφος φρεάτιο, σε καίρια σημεία της κατασκευής.

Με την διπλή προτεταμένη κητόστρωση είναι σαν να έχουμε στατικά, πότε μια βάση, και πότε ένα πρόβολο.
Αυτό γίνετε λόγο μεταβολής φάσης του κύματος,( κάτω από την κητόστρωση) οπότε και μεταβολή μορφής των στατικών φορτίων της κητόστρωσης.
Πιστεύω ότι η διπλή κητόστρωση, δεν μετατρέπει τις κολώνες σε έμβολα των κόμβων, όπως γίνετε με τις μεμονωμένες βάσεις, στα κύματα LOVE.

Φαντάσου μία μαούνα που το κύμα περνάει από κάτω της.
Πότε θα είναι όλη πάνω στο κύμα, πότε θα εξέχουν τα άκρατης, σαν πρόβολος.

Μπορεί να ταλαντεύετε όπως ταλαντεύεται στο σεισμό το σπίτι.

Ο οριζόντιος άξονας της όμως παραμένει άκαμπτος, αν και υπό κλίση.

Οι μεμονωμένες βάσεις, σε μεγάλου εμβαδού οικοδομές, δρουν σαν δύο ξεχωριστές σημαδούρες πάνω στο κύμα, οι οποίες έχουν εμφανή διαφορά φάσης.

Η αδράνεια του δομικού έργου στην επιτάχυνση του σεισμού, ( που σηκώνει τον σκελετό ) σε συνδυασμό με την ανικανότητα των κόμβων να παραλάβουν τις ροπές των στατικών φορτίων του φέροντος σκελετού, ( όταν έχει ανασηκωθεί ο σκελετός )
είναι ο κύριος λόγος που δημιουργούνται τα λοξά βέλη. ( ρωγμές )

http://www.postimage.org/image.php?v=Tsm4RK0
και http://www.youtube.com/watch?v=HyAxO1lH5YE

Και η επιτάχυνση του σεισμού, σε συνδυασμό με την πακτωμένη βάση ( ως προς τις οριζόντιες ασκούσες δυνάμεις της επιτάχυνσης ) σε συνδυασμό με τα στατικά φορτία του φέροντος, είναι ο άλλος λόγος διάτμισης των κολονών του ισογείου.

Ο εμβολισμός των δοκών μέσω των κολονών, από την κυματοειδή μορφή των κυμάτων LOVE σε μεγάλα δομικά έργα, είναι ο τρίτος λόγος, που καταρρέει ένα έργο.

Για εμένα, είναι λάθος
α) που κατασκευάζουμε σκελετούς με κόμβους.
β) που χώνουμε τις κολόνες στο έδαφος.
γ) που κατασκευάζουμε μεμονωμένες βάσεις, χωρίς την πρόσθετη επιφανειακή προτεταμένη κυτόστρωση.

Αμφισβητώ την ως τώρα λογική δόμησης, ως άκρος επικίνδυνη.
Σέβομαι τους μηχανικούς, αλλά είμαι έτοιμος να παλέψω για αυτά που υποστηρίζω. ( Στατικά )

Θεωρώ σωστό τρόπο δόμησης.
α) Την μονολιθικότητα, προτεταμένη με το έδαφος, ( για μικρού εμβαδού δομικά έργα )
πάνω σε ολοκληρωτική προτεταμένη κυτόστρωση. Π.Χ http://www.postimage.org/image.php?v=PqgqEFr
Και http://www.postimage.org/image.php?v=PqdjPGi

β) σε μεγάλα έργα, διπλή προτεταμένη κυτόστρωση με εφέρδανα, και τρίτο ανεξάρτητο στοιχείο προτεταμένο με το έδαφος, στο κέντρο, ή στα δύο άκρα της οικοδομής. Π.Χ http://www.youtube.com/watch?v=KPaNZ...layer_embedded

Ή Την μονολιθικότητα, προτεταμένη με το έδαφος,
πάνω σε ολοκληρωτική προτεταμένη κυτόστρωση, και αρμό συστολής διαστολής ανά 30 μ.

Η άγκυρα του υδραυλικού ελκυστήρα. http://www.postimage.org/image.php?v=aVMXVYJ
http://www.postimage.org/image.php?v=aVMZ6O0
__________________
Έρευνα είναι η επεξεργασία του σωστού και του λάθους.

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 08 Απρ 2011 20:49    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Τι κάνει η ευρεσιτεχνία, που δεν κάνει η εφαρμοσμένη τεχνολογία σήμερα.
Η εφαρμοσμένη τεχνολογία σήμερα απλός εδράζει την κατασκευή στο έδαφος.
Η ευρεσιτεχνία την ενώνει με το έδαφος, κάνοντας αυτά τα δύο ένα, (σαν σάντουιτς)
Για μένα αυτή η ένωση της κατασκευής με το έδαφος, αλλάζει ευεργετικά την κατεύθυνση και το είδος των δυνάμεων, που εφαρμόζονται στην κατασκευή δυναμικά, κατά την διέγερση του σεισμού, και προκαλούν αστοχία.
Δυνάμεις που προκαλούν αστοχία στα κτήρια.
α) Οι δυνάμεις διάτμησης.
β) Οι ροπές στους κόμβους
Πως δημιουργούνται
1) ΔΥΝΑΜΕΙΣ ΔΙΑΤΜΗΣΗΣ
α) Οι δυνάμεις διάτμησης, δημιουργούνται κυρίως στα κάθετα στοιχεία στήριξης κατά την επιτάχυνση του σεισμού, λόγο αδράνειας της μάζας.
Ερώτηση.
Η διάτμηση είναι η ίδια σε όλα τα στοιχεία στήριξης?
Απάντηση
Όχι. Η διάτμηση είναι μεγαλύτερης ισχύος στα στοιχεία του ισογείου.
Ερώτηση. Γιατί?
Απάντηση
Για δύο κύριους λόγους.
α) Έχουν να διαχειριστούν (σε μετακίνηση) περισσότερα φορτία μάζας, που συνεπάγεται σε μεγαλύτερη αδράνεια, οπότε στην δημιουργία μεγαλύτερης διάτμησης στην διατομή κάτοψις του στοιχείου.
β) Λόγο ακαμψίας των στοιχείων του ισογείου.
Όλα τα άλλα στοιχεία στήριξης, ( εκτός του ισογείου ) έχουν κάποια ελαστικότητα στους κόμβους, και στα στοιχεία στήριξης, η οποία είναι ευεργετική, διότι απορροφούν ενέργεια του σεισμού, λόγο μετατροπής της ενέργειας αυτής, σε θερμότητα.

Αυτή η ευεργετική απορρόφηση ενέργειας,καταργείται κατά μεγάλο βαθμό στα στοιχεία του ισογείου, για ένα κύριο λόγο.
Διότι κάτω από το στοιχείο ( κολόνα ) του ισογείου υπάρχει η βάση, η οποία είναι άκαμπτη, (διότι είναι συνήθως μέσα στο έδαφος) και μεταδίδει ακέραια την επιτάχυνση του σεισμού. ( Οπότε και αυξημένες διατμητικές τάσεις )
Στα στοιχεία ( κολόνες ) των πάνω ορόφων δεν συμβαίνει το ίδιο, διότι το στοιχείο του κάτω ορόφου έχει απορροφήσει κάποια ενέργεια, μεταδίδοντας στον πιο πάνω όροφο μικρότερη ενέργεια.

Σε συνδυασμό με τα αυξημένα φορτία της μάζας που έχει να διαχειριστεί, έχουμε αυξημένες κατά πολύ τις τάσεις ( δυνάμεις )
διάτμησης στα στοιχεία του ισογείου.
Για τον λόγο αυτό, οι περισσότερες αστοχίες συμβαίνουν στο ισόγειο.
Αυτό το φαινόμενο μπορούμε να το λύσουμε αυξάνοντας την διατομή κάτοψης των στοιχείων του ισογείου.
Αν όμως το κάνουμε αυτό, έχουμε άλλο πρόβλημα.

α) Χάνουμε την ελαστικότητα των στοιχείων. ( οπότε και την απόσβεση της επιτάχυνσης )


2) ΡΟΠΕΣ ΣΤΟΥΣ ΚΌΜΒΟΥΣ
Οι ροπές στους κόμβους, οι οποίες και αυτές καταλήγουν να καταπονούν τα κάθετα και οριζόντια στοιχεία στήριξης, με διατμητικές τάσεις, συμβαίνουν για τον εξής λόγο.
Κατά την επιτάχυνση του σεισμού, έχουμε την γνωστή αδράνεια του φέροντος οργανισμού, αλλά και την αδράνεια των φερόντων μαζών που έχουν να διαχειριστούν, και επιβαρύνουν με οριζόντιες διατμητικές τάσεις τα κάθετα στοιχεία.
Σε ένα πολυόροφο κτήριο, τα κάθετα στοιχεία, είναι ενιαία από τον πρώτο όροφο, μέχρι τον τελευταίο.
Η δομική ακεραιότητα όλων των στοιχείων του φέροντος οργανισμού, ( κολόνες, δοκοί, πλάκες ) επιτυγχάνετε όταν αυτά ενωθούν στα κομβικά σημεία

Αυτά τα κομβικά σημεία
στην αδράνεια του φέροντος οργανισμού, αντιδρούν με ροπές, που καταπονούν με διατμητικές τάσεις τα κάθετα και οριζόντια στοιχεία
Αν ο σχεδιασμός δεν είναι σωστός, καταλήγει σε αστοχία, του κάθετου στοιχείου, που είναι ψαθυρό, και όχι του οριζόντιου.
Ο λόγος είναι ότι το κάθετο στοιχείο, ( κολόνα ) έχει μικρότερη διατομή κάτοψις, σε σχέση με την δοκό, της οποίας η μάζα, καθ όλο το μήκος της αποτελεί δομική οντότητα με την πλάκα, οπότε υπολογίζεται σαν ενιαίο σώμα ισχυρότερη του κάθετου στοιχείου
Αν λάβουμε υπ’ όψιν ότι μία κολόνα φέρει επάνω της τουλάχιστον δύο δοκούς, καταλαβαίνουμε την διαφορά αντοχής ( ως προς την διάτμηση ) μεταξύ της κολόνας, και των οριζόντιων στοιχείων στήριξης.


Κατά την ταλάντωση ενός ψιλού κτηρίου, αυτό έχει την τάση να σηκωθεί μονόπλευρα λόγο ροπής δημιουργώντας ένα κενό κάτω από τις πίσω βάσεις.
Δηλαδή οι μπροστινές κολόνες προσπαθούν να σηκώσουν τις πίσω κολόνες, λόγο τις δομικής οντότητας που έχουν, και τους την προσφέρει η ένωσή τους με τις δοκούς
Αυτό το κενό, ακυρώνει την αντίσταση του εδάφους προς την βάση, οπότε η βάση, από εκεί που κράταγε το κτίριο μένει μετέωρη στον αέρα.
Βέβαια αυτό στην πράξη δεν συμβαίνει ποτέ, διότι τα στατικά φορτία της κατασκευής, κατά την μονόπλευρη άνοδό του, έρχονται να καθηλώσουν την κολόνα με την βάση στο έδαφος,δημιουργώντας ροπές στους κόμβους,

Αυτές οι ροπές,δημιουργούν λοξή διάτμηση στην διατομή κάτοψης του κάθετου στοιχείου, το οποίο δεν αντέχει τα φορτία, και έχουμε ψαθυρά αποτελέσματα, ακυρώνοντας την δομική οντότητα της κατασκευής.


Αυτά που εξήγησα φαίνονται καθαρά στα πρώτα λεπτά του πειράματος που έχω κάνει.
http://www.youtube.com/watch?v=JJIsx1sKkLk
Στο πείραμα στα πρώτα λεπτά, βλέπουμε έναν ξύλινο φέροντα οργανισμό, ( σκελετό οικοδομής ) ο οποίος κατά την αδράνεια ταλαντεύεται και σηκώνετε μονόπλευρα, εναλλάξ.
Αυτό συμβαίνει διότι είναι ελαφρύς, και οι κόμβοι του αντέχουν τις ροπές, που δημιουργούνται από το στατικό βάρος της αστήρικτης πλευράς του φέροντα οργανισμού.
Μόλις όμως του βάλουμε τα στατικά φορτία των δύο τούβλων, αυτός ναι μεν ταλαντεύεται, αλλά οι βάσεις δεν σηκώνονται μονόπλευρα,
διότι οι κόμβοι δεν αντέχουν πια το πρόσθετο στατικό φορτίο των τούβλων.
ΛΥΣΗ
Εδώ από την ανάλυση που έκανα πάρα πάνω, βλέπουμε γιατί αστοχεί μία κατασκευή, όταν αυτή περάσει τα όρια σχεδίασης.
Δεν υπάρχει απόλυτος αντισεισμικός σχεδιασμός
Ο Ελληνικός αντισεισμικός κανονισμός έχει κάποια αντοχή, και από εκεί και πέρα υπάρχει μόνο η ψαθυρή αλήθεια.
Για μένα η αντοχή του έχει συγκεκριμένα όρια για τον λόγο που ανέφερα πάρα πάνω.
(Αυτό το φαινόμενο μπορούμε να το λύσουμε αυξάνοντας την διατομή κάτοψης των στοιχείων του ισογείου.
Αν όμως το κάνουμε αυτό, έχουμε άλλο πρόβλημα.

Χάνουμε την ελαστικότητα των στοιχείων. ( οπότε και την απόσβεση της επιτάχυνσης ) )


Η ΛΥΣΗ ΠΟΥ ΠΡΟΤΕΙΝΩ
Φαίνεται και στην συνέχεια του πειράματος που σας παρέθεσα στο link, αλλά φαίνεται και σε αυτά που θα πω πάρα κάτω.
Υπάρχουν τρία προβλήματα που πρέπει να λύσουμε, για να εφαρμόσουμε προένταση μεταξύ εδάφους και δώματος,.... ή απλή πάκτωση του εδάφους με την κατασκευή.
α) Ο λυγισμός
β) Η αντοχή των υλικών.
γ) Η αντοχή του εδάφους
Για να δουλέψει ευεργετικά στον σεισμό η προένταση, ή η πάκτωση της κατασκευής με το έδαφος, χρειάζεται μεγάλη διατομή κάτοψις των στοιχείων στήριξης, και μεγάλη αντοχή υλικών, αν πρόκειται να εφαρμόσουμε προένταση, ώστε να έχουμε πρόσθετα τα ευεργετήματα αυτής, στα πλαίσια της επαλληλίας.
Αυτά τα δύο στοιχεία που χρειάζομαι μου τα προσφέρουν τα προκατασκευασμένα σπίτια, τα οποία είναι εξ ολοκλήρου από οπλισμένο σκυρόδεμα.
Το γ) πρόβλημα των χαλαρών εδαφών, μου το λύνει η κυτόστρωση, και ο ιδικός μηχανισμός του υδραυλικού ελκυστήρα, που βελτιώνει την αντοχή του εδάφους, και παρέχει πρόσθετη στήριξη στην βάση.

Κοίτα τη παθαίνει η συμβατική κατοικία.
http://www.youtube.com/watch?v=Hgc19...eature=related
http://www.youtube.com/watch?v=mgjAX...eature=related
http://www.youtube.com/watch?v=jTrDC...eature=related

Φαντάσου σπίτια ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΈΝΑ από οπλισμένο σκυρόδεμα, βιδωμένα στις τέσσερις γωνίες με την σεισμική βάση.......και ανάποδα να τα γυρίσεις δεν θα πάθουν τίποτα.
Ερώτηση
Όταν δεν τα βιδώσουμε με την βάση, τι θα πάθουν?
Απάντηση
Αν έχουμε ψιλά κτήρια εξ ολοκλήρου κατασκευασμένα από οπλισμένο σκυρόδεμα, αυτά θα αντέξουν στην διάτμηση, αλλά οι κόμβοι τους θα έχουν αυξημένα φορτία, λόγο του κενού που αναφέραμε ότι δημιουργείται κάτω από την βάση κατά την ροπή αδράνειας, και λόγο μεγαλύτερου στατικού φορτίου που έχουν.
Ο συνδυασμός αδράνεια και στατικά φορτία, δημιουργούν τα λοξά κρακ στους τοίχους.
Για αυτό είναι λοξά τα κρακ, διότι ακολουθούν την συνισταμένη των δυνάμεων της αδράνειας και των στατικών φορτίον
Για τον λόγο αυτό, οι κατασκευές των προκατασκευασμένων είναι για λίγους ορόφους.
Αν όμως κάνουμε ένα σώμα το προκατασκευασμένο από οπλισμένο σκυρόδεμα με το έδαφος, http://postimage.org/image/r1aadhj8/
...δεν μπορεί να σηκωθεί μονόπλευρα, στην ροπή αδράνειας, οπότε, καταργούμε τις ροπές των κόμβων.

Υπάρχει και το οικονομικό μέρος.
Πιστεύω ότι αυτή η μέθοδος θα βάλει τα προκατασκευασμένα από σκυρόδεμα σπίτια, και μέσα στην πόλη.

Έως τώρα αυτά τα σπίτια είναι μόνο για εξοχικά.
Ο κύριος λόγος είναι ότι, ο νόμος δεν τους επιτρέπει, το ύψος τους να ξεπερνά τους δύο ορόφους.
Όταν όμως γίνουν άτρωτα στον σεισμό, και μπορούν να αντέχουν πολλούς ορόφους, τότε θα επιτραπεί η δόμηση <τους> στην πόλη.

Τώρα δεν επιτρέπονται μέσα σε πόλεις, διότι αν στην πόλη επιτρέπετε να χτίσεις ένα δεκαόροφο, και το προκατασκευασμένο αντέχει δύο ορόφους, δεν σε συμφέρει να χάσεις τον αέρα για άλλους οκτώ ορόφους.

Αν όμως το κάνω να αντέχει, τότε θα καταργηθούν οι συμβατικοί τρόποι κατασκευής, γιατί τα προκατασκευασμένα είναι πιο φτηνά, 30-50% γιατί είναι βιομηχανοποιημένα.
Έτσι θα έχουν κέρδος οι βιομήχανοι από αυτή την αλλαγή.

Εκτός όμως από αντισεισμικό, η ευρεσιτεχνία μπορεί να χρησιμοποιηθεί και σαν προεντεταμένο αγκύριο, για την βελτίωση εδαφών
Π.Χ http://postimage.org/image/29l3p1xpg/
Διότι, και βελτιώνει την πυκνότητα των χαλαρών εδαφών, αλλά δεν αφήνει και το έργο να πάει ούτε πάνω,( στην ταλάντωση ) ούτε κάτω ( σε υποχώρηση του εδάφους )
Έχω αναφέρει τους τρόπους τοποθέτησης σε υφιστάμενα και υπό κατασκευή κτήρια, και άλλες κατασκευές, όπως φράγματα, γέφυρες, κ.λ.π
Κάνει και για την προστασία των ελαφριών κατασκευών από τους ανεμοστρόβιλους που πλήττουν κυρίως την Αμερική.

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 07 Νοε 2011 19:31    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Αρθρο

Κατά την διέγερση του σεισμού ο φέρον οργανισμός ( σκελετός οικοδομής ) με την σημερινή μέθοδο κατασκευής παρουσιάζει προβλήματα τα οποία εγώ με την ευρεσιτεχνία λύνω.
Ποια είναι αυτά.
α) Τέμνουσες
Τι είναι αυτές, και που υφίστανται πάνω στον σκελετό της οικοδομής.

Οι τέμνουσες είναι δύο αντίθετες δυνάμεις, των οποίων οι άξονες τους είναι παράλληλοι και περνούν ο ένας πλησίον του άλλου, όπως π.χ το ψαλίδι.

Στον σκελετό οι τέμνουσες υφίστανται σε πολλά σημεία του.
Τα κυριότερα σημεία που οι τέμνουσες είναι ψαθυρές είναι.

α) Στο κάτω μέρος της κολόνας του ισογείου, κοντά στο σημείο που ενώνετε με την βάση.
Ερώτηση...γιατί σε εκείνο το σημείο οι τέμνουσες είναι πιο ψαθυρές?

Απάντηση...Διότι ο σεισμός έχει μια φορά που την μεταδίνει ατόφια στην βάση της κολόνας διότι αυτή είναι θαμμένη στο έδαφος, και την αναγκάζει το έδαφος να κινηθεί στον ρυθμό της επιτάχυνσης και φοράς του σεισμού.

Ο σκελετός αντιδρά σε αυτήν την κίνηση, λόγο αδράνειας και στο κάτω σημείο της κολόνας δημιουργείται η τέμνουσα.
Το κάτω σημείο της κολόνας του ισογείου είναι πιο ψαθυρό, για τρεις κύριους λόγους.
1) διότι έχει να διαχειριστεί περισσότερα στατικά φορτία του φέροντος, από ότι έχουν να διαχειρισθούν οι άλλες κολόνες των πάνω ορόφων,

2) διότι έχει να διαχειρισθεί περισσότερες οριζόντιες φορτίσεις του σεισμού

3) διότι δεν υπάρχει καθόλου ελαστικότητα στο κάτω σημείο της κολόνας του ισογείου, η οποία χρησιμεύει για την απορρόφηση της ενέργειας του σεισμού, ενώ αυτή η ελαστικότητα υπάρχει στις πάνω κολόνες.

Οπότε για τους τρεις λόγους που ανέφερα συμπεραίνουμε ότι οι τέμνουσες σε αυτές τις κολόνες του ισογείου είναι μεγαλύτερες από ότι είναι στις κολόνες των πάνω ορόφων, διότι διαχειρίζονται μεγαλύτερες οριζόντιες και κάθετες φορτίσεις κατά την διέγερση του σεισμού.

Τι κάνει η ευρεσιτεχνία για να λύση το πρόβλημα της αστοχίας που προκαλούν οι τέμνουσες στις κολόνες του ισογείου.

Από την στιγμή που ο μηχανισμός του υδραυλικού ελκυστήρα εφαρμόζει κάθετη προένταση στις κολόνες ή τα τοιχία, ξέρουμε ότι η προένταση αυτή στα πλαίσια της επαλληλίας (μέσα στο πλαίσιο αντοχής της κολόνας ) έχει ευεργετικά αποτελέσματα.

Πια είναι τα ευεργετικά αποτελέσματα της προέντασης ως προς τις τέμνουσες των κολονών του ισογείου.

Η προένταση (γενικά η θλίψη) έχει πολύ θετικά αποτελέσματα, καθότι βελτιώνει τις τροχιές του λοξού εφελκυσμού.

Από την άλλη έχεις και το άλλο καλό...τη μειωμένη ρηγμάτωση λόγω θλίψης, κάτι που αυξάνει την ενεργό διατομή και αυξάνει και τη δυσκαμψία της κατασκευής.

Παράδηγμα...
Εάν έχουμε δύο τσιμεντόλιθους και τους τοποθετήσουμε τον έναν πάνω στον άλλον.
Αν μετά εφαρμόσουμε στον πάνω τσιμεντόλιθο μία δεξιά οριζόντια φόρτιση 10 κιλών, και στον κάτω τσιμεντόλιθο μία αριστερή οριζόντια φόρτιση 10 κιλών, θα παρατηρήσουμε ότι αυτοί θα ολισθήσουν στο σημείο που εφάπτονται.
Αυτή είναι η τέμνουσα που σπάει την κολόνα.

Αν όμως καθίσει κάποιος πάνω στους δύο τσιμεντόλιθους, εφαρμόζοντας σε αυτούς ένα κάθετο φορτίο όπως εφαρμόζει και η προένταση, τότε θα παρατηρήσουμε ότι οι αριστερόστροφες και δεξιόστροφες δυνάμεις που εφαρμόσαμε πριν, δεν επαρκούν για να αναγκάσουν τους τσιμεντόλιθους να ολισθήσουν.
Συμπέρασμα.
Η θλίψη ή η προένταση, αυξάνει την αντοχή των κολονών του ισογείου ως προς τις τέμνουσες.

Εκτός από τις τέμνουσες που αναφέραμε πάρα πάνω, που κατά κύριο λόγο εφαρμόζονται στο κάτω μέρος της κολόνας του ισογείου, οι τέμνουσες εφαρμόζονται και σε άλλα σημεία του φέροντος σκελετού.

Πια είναι τα άλλα σημεία που εφαρμόζονται τέμνουσες???
Στους κόμβους ( γωνίες ) που σχηματίζονται στο σημείο ένωσης, της κολόνας με την δοκό, ή της δοκού με την πλάκα, ή της βάσης με την κολόνα, ή της πεδιλοδοκού με την βάση, ή της κοιτόστρωσης ( ραντιέφ ή αλιώς κοιτόστρωση= μονοκόμματη βάση με εμβαδόν όσο το εμβαδόν του ισογείου του σκελετού ) με την κολόνα.


Πως δημιουργούνται οι τέμνουσες σε αυτά τα σημεία?
Η ροπή που εφαρμόζεται στους κόμβους κατά τον σεισμό, δημιουργεί τέμνουσες ( λόγο αντίστασης του κόμβου, ) και στην κολόνα, και στην δοκό.
Εκτός των λόγων που αναφέραμε πριν, υπάρχει και ένας πρόσθετος λόγος που δημιουργεί ροπές στους κόμβους, οπότε και τέμνουσες στις κολόνες και τους δοκούς.

Ο πρόσθετος λόγος είναι η -ταλάντωση,- που επέρχεται στο σκελετό (κυρίως στον πολύ ψιλό σκελετό )κατά τον σεισμό.

Τι προβλήματα δημιουργεί η ταλάντωση στο κτήριο???

Αυτό είναι ένα μεγάλο ερώτημα, που για να απαντηθεί πρέπει να χωρισθεί σε δύο ενότητες.
α) Η πρώτη ενότητα έχει να κάνει με την ίδιο συχνότητα του κτηρίου με τον σεισμό.
Από αυτή εξαρτάτε η ταλάντωση του κτιρίου.

Το ψιλό το κτήριο έχει πρόβλημα από τον μακρινό σεισμό, διότι το μήκος κύματος του μακρινού σεισμού, είναι μεγάλο, και ταλαντεύει το ψιλό κτήριο περισσότερο από το μεσαίο, και πολύ περισσότερο από το μικρό.

Αντίθετα το μικρό σε ύψος κτήριο έχει πρόβλημα με τον κοντινό σεισμό, όπου το εύρος κύματος που έχει είναι μικρότερο, αλλά με μεγαλύτερη συχνότητα.
Αυτά φαίνονται καθαρά σε αυτό το βίντεο.

http://www.youtube.com/watch?v=LV_UuzEznHs&feature=related

β) η δεύτερη ενότητα έχει να κάνει με το σχήμα του κτηρίου, και τις διαστάσεις των κολονών, τοιχίων ( διαστασιολόγιση διατομής κάτοψης ) και την φορά του σεισμού, αλλά κατά κύριο λόγο με τα κάθετα φορτία του φέροντος σκελετού.

Ας εξετάσουμε τρεις διαφορετικούς φορείς κατασκευών

α) Φέρον οργανισμός ( σκελετός οικοδομής )

Ξέρουμε ότι μία κολόνα μικρής διατομής ( εν σχέση με το ύψος της ) είναι πιο ελαστική, από μία κολόνα μεγάλης διατομής.

Ξέρουμε δεδομένα ότι οι πολλές μεμονωμένες κολόνες και τα πολλά τοιχία δημιουργούν δομική οντότητα μεταξύ των, με την σύνδεσή τους με τους δοκούς.

Δηλαδή αν μία κολόνα ύψους 7 ορόφων υψωνόταν μόνη της χωρίς την σύνδεση αυτής με τις άλλες κολόνες, ( με την βοήθεια των δοκών ) αυτή θα έπεφτε με τον αέρα και μόνο.

Συμπέρασμα
Όλη η δομική οντότητα του σκελετού της οικοδομής ως προς τις πλάγιες φορτίσεις, που μεταδίδει ο αέρας ή η αδράνεια του σκελετού στον σεισμό, εξαρτάτε από την ένωση των κολονών και δοκών στους κόμβους.

Αυτό ξεχωρίζει την στατική, με την δυναμική των κατασκευών.
Η στατική ασχολείται με τα κάθετα μόνο φορτία του σκελετού, ενώ η δυναμική των κατασκευών με τις πλάγιες φορτίσεις προερχόμενες από τον αέρα, ή τον σεισμό.

Τι παθαίνει ο σκελετός της οικοδομής κατά την ταλάντωση προερχόμενη από τον σεισμό και τον αέρα?

Ας εξετάσουμε απλά βάση των νόμων της φυσικής, τα φορτία που δέχεται ο σκελετός της οικοδομής κατά την διέγερση του σεισμού.

α) Αδράνεια.
Τα σώματα τους αρέσει να εξακολουθούν να κάνουν αυτό που κάνουν.
Αν είναι ακίνητα, τους αρέσει να μένουν ακίνητα.
Αν κινούνται τους αρέσει να συνεχίζουν να κινούνται.
Παράδειγμα http://www.youtube.com/watch?v=fLLxU2mqb0U

Συμπέρασμα. Όταν ο σεισμός κινείται κατά μία κατεύθυνση, ο σκελετός της οικοδομής αντιδρά σε αυτήν την κίνηση, λόγο της αδράνειας.
Αυτή η αντίδραση δημιουργεί τις τέμνουσες του ισογείου.

Αυτή η αντίδραση είναι που προκαλεί και την ταλάντωση, η οποία εξαρτάτε από την συχνότητα του σεισμού, το εύρος κύματος αυτού, και το ύψος του κτηρίου ( εν σχέση του εμβαδού του )

Αυτή η ταλάντωση τείνει να ανατρέψει και τον φέροντα σκελετό με πολύ ψιλό κέντρο βάρους.
Δηλαδή ο φέροντας ( κολόνες, δοκάρια, πλάκες ) σαν δομική οντότητα που του την προσφέρουν οι κόμβοι ( γωνίες ) αντιδρά σε αυτή την ταλάντωση στους κόμβους.

Τι φορτία δέχονται οι κόμβοι κατά την διέγερση του σεισμού?
Τα κύρια φορτία που δέχονται είναι δύο

α) Την αδράνεια της μάζας ( της πλάκας, των πραγμάτων, της τοιχοποιίας, ) τα οποία ονομάζουμε οριζόντιες φορτίσεις.

β) Τα φορτία της κατασκευής ( το ιδικό βάρος της πλάκας των πραγμάτων, της τοιχοποιίας ) τα οποία ονομάζουμε κάθετες φορτίσεις.

Για να εξετάσουμε τώρα πως ενεργούν πάνω στον κόμβο οι οριζόντιες και οι κάθετες φορτίσεις.

Ένας κόμβος με γωνία 90 μοιρών από οπλισμένο σκυρόδεμα για να παραμείνει ακέραιος, πρέπει κατά τον σεισμό, να διατηρήσει την γωνία του στις ίδιες μοίρες.

Η ταλάντωση όμως κατά τον σεισμό, όπως ξέρουμε, αλλάζει την κλίση της κολόνας, και από κατακόρυφος που ήταν ο άξονας της, αλλάζει μερικές μοίρες ( εναλλάξ του κάθετου άξονα )

Η κολόνα κατά την φάση που η κλίση της αλλάζει, αναγκάζει μέσο του κόμβου που τους ενώνει με τα άλλα στοιχεία το δοκό να μετακινήσει και αυτός τον οριζόντιο άξονα του μερικές μοίρες προς τα πάνω.

Εδώ υπάρχει το πρόβλημα του σκελετού κατά την ταλάντωση, διότι την στιγμή που η δοκός δέχεται φορτία με τάση ανόδου από την κολόνα, τότε έρχονται σε αντίθεση με τα καθοδικά φορτία του βάρους του κτηρίου.

Τα καθοδικά φορτία υπερνικούν τα φορτία ανόδου της δοκού, με αποτέλεσμα η δοκός να αναγκάζεται να παραμείνει οριζόντια.

Η κολόνα όμως, δεν παραμένει οριζόντια, ( αλλάζει μερικές μοίρες ο κάθετος άξονας της )
Το αποτέλεσμα είναι ο κόμβος που προσδίδει δομική οντότητα στα στοιχεία αυτά να τείνει από 90 μοίρες που είναι, να γίνει 80 μοίρες, ή 100 μοίρες, εναλλάξ κατά την ταλάντωση.

Ο κόμβος όμως είναι πολύ άκαμπτος και γερός, και αντί να αλλάξει μοίρες, μεταδίδει τα καθοδικά και οριζόντια φορτία στις διατομές των στοιχείων ( διατομή κάτοψις κολόνας, διατομή δοκού και πλάκας )

Οπότε στην πράξη δεν σπάει ο κόμβος, αλλά το πιο ψαθυρό στοιχείο λίγο πιο πέρα από τον κόμβο.
Την ψαθυρότητα την δημιουργεί η αντίθεση των φορτίων, στο λαιμό της κολόνας και της δοκού, δημιουργώντας τις τέμνουσες.

Πιο είναι πιο ψαθυρό στοιχείο, η κολόνα ή η δοκός?
Φυσικά είναι η κολόνα, διότι αυτή έχει μικρότερη διατομή από την διατομή της δοκού, διότι η διατομή της δοκού είναι ένα σώμα ακέραιο με την διατομή της πλάκας, και οι δύο μαζί υπερτερούν της διατομής της κολόνας.
Και όπως ξέρουμε, μεγαλύτερη διατομή, περισσότερη αντοχή ως προς τις τέμνουσες.

Από ότι αναφέραμε πιο πάνω, οι κύριες φορτίσεις που είναι ψαθυρές για τον φέροντα οργανισμό κατά την διέγερση του σεισμού, είναι δύο.

α) Οριζόντιες φορτίσεις ( προερχόμενες από την αδράνεια )
β) Κάθετες φορτίσεις ( προερχόμενες από το ιδικό βάρος του φέροντος, της τοιχοποιίας, και των πραγμάτων )

Ακόμα αναφέραμε πιο πάνω, ότι η κολόνα κατά τον σεισμό, μετατοπίζει τον κάθετο άξονά της πότε δεξιά πότε αριστερά, ενώ η δοκός διατηρεί τον οριζόντιο άξονά της λόγο των κάθετων φορτίσεων.

Συμπέρασμα
Αν μπορέσουμε να σταματήσουμε τον κάθετο άξονα της κολόνας να αλλάζει μοίρες εναλλάξ, ( λόγο πλάγιων φορτίσεων ) τότε δεν θα υπάρχουν τέμνουσες στα στοιχεία της κολόνας και της δοκού, διότι ο κόμβος θα παραμείνει 90 μοίρες.

Πως μπορούμε να σταματήσουμε τον κάθετο άξονα της κολόνας να αλλάζει μοίρες εναλλάξ?

Μπορούμε με τρεις τρόπους

α) Ή να πακτώσουμε την βάση με το έδαφος.
β) Ή να πακτώσουμε το δώμα με το έδαφος.
γ) Ή να προ εντείνουμε το δώμα με το έδαφος στα πλαίσια της επαλληλίας ( στα πλαίσια αντοχής της κολόνας στην θλίψη και την κάμψη )

Βασική προυπόθεση για να εφαρμόσουμε τους πάρα πάνω τρεις τρόπους, είναι οι κολόνες να μην είναι πολύ μικρές, ή να είναι αντί κολόνες τοιχία.
( μεγάλη διατομή κάτοψις σε μήκος )

Γιατί οι κολόνες τοιχία πρέπει να έχουν μεγάλη διατομή κάτοψις σε μήκος ?
Για τέσσερις κύριους λόγους.

α) Για να μην κάμπτονται εύκολα κατά την προένταση( όπως οι μικρές κολόνες )
β) Για να αντέχουν να διαχειρισθούν και τα στατικά φορτία, και τα πρόσθετα φορτία της προέντασης.
γ) Για να μπορούμε να κάνουμε εύκολα την κατάλληλη διαστασιολόγιση στην διατομή κάτοψις
Δηλαδή οι κολόνες τοιχία, μπορούμε σε ένα σχέδιο κάτοψις ενός φέροντος οργανισμού να τις τοποθετήσουμε κατά διαφορετικές διευθύνσεις, έτσι ώστε από όποια κατεύθυνση και αν έλθει ο σεισμός να φέρουν αντίσταση.
δ) Όταν η διατομή του τοιχίου κατά μήκος είναι μεγάλη, μπορούμε να το πακτώσουμε στα δύο άκρα του.

Η πάκτωση ή προένταση των δύο άκρων του τοιχίου, είναι πολύ καλύτερη από ότι η πάκτωση μιας κολόνας στο κεντρικό σημείο της, γιατί...
κατά την ταλάντωση του τοιχίου στις πλάγιες φορτίσεις του σεισμού, το ένα άκρο του τοιχίου προσπαθεί να σηκώσει το άλλο άκρο του.

Αν είναι πακτωμένο, ή καλύτερα προεντεταμένο στα δύο άκρα του, αυτή η τάση ανόδου της βάσης του τοιχίου δεν μπορεί να γίνει, διότι είναι προεντεταμένη με το έδαφος.
Οπότε αφού δεν μπορεί να ταλαντευτεί το τοιχίο, καταργούμε την ταλάντωση ( το κάνουμε άκαμπτο )
Οπότε καταργούμε στην πράξη.

α) Την μετατόπιση του κάθετου άξονα της κολόνας, που συνεπάγεται σε κατάργηση ....
β) των ροπών στους κόμβους που προκαλούν τις τέμνουσες των κολονών και των δοκών.

Με λίγα λόγια, το πακτωμένο ή προεντεταμένο τοιχίο, μπορεί μόνο του ( χωρίς την βοήθεια των κόμβων ) να παραλάβει τις οριζόντιες φορτίσεις του σεισμού, χωρίς να καταργεί και την πρόσθετη αντίσταση των κόμβων πάνω στις πλάγιες φορτίσεις.

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
fiskilis
Honorary Member

Μέλος από: 16 Νοε 2003
Βοηθήματα: 1
Νέα: 15
Μηνύματα: 256+

Περιοχή: Athens
View users profile Send email to user Visit posters website
blog cv portfolio deviantART flickr picasa 
myspace facebook linkedin hi5 sync twitter 
friendfeed deviantART digg del.icio.us skype 
ΜήνυμαΣτις: 07 Νοε 2011 20:06    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

καλως τον ποιος καλος σεισμος σε ξαναφερε στα μερη μας;

_________________
* Κάρτα Υγείας * Ελληνικά Προϊόντα * Κατάλογος ΚοινΣΕπ *
* Mentoring on Social Economy, Σύμβουλος ανάπτυξης Κοινωνικής Επιχειρηματικότητας *
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 13 Ιουν 2012 17:51    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

fiskilis ανέφερε:
καλως τον ποιος καλος σεισμος σε ξαναφερε στα μερη μας;


Της Ιταλίας.

Παιδιά το Ελληνικό επιστημονικό περιοδικό ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ http://www.metalkat.gr/
στο επόμενο τεύχος του, δέχθηκε να δημοσιεύσει το παρακάτω άρθρο που του έγραψα εγώ.

Το Απόλυτο αντισεισμικό σύστημα
Μεταλλικών, Σύμμεικτων,
και άλλων δομικών έργων

Ιωάννης Λυμπέρης
Εργοδηγός Δομικών Εργων.
Σύντομη περιγραφή της εφεύρεσης

Ο υδραυλικός ελκυστήρας δομικών έργων της παρούσας
εφεύρεσης καθώς και ο τρόπος κατασκευής των δομικών
κατασκευών χρησιμοποιώντας τον υδραυλικό ελκυστήρα της
παρούσας εφεύρεσης έχουν ως κύριο σκοπό την ελαχιστοποί-
ηση των προβλημάτων που σχετίζονται με την ασφάλεια των
δομικών κατασκευών στην περίπτωση αντιμετώπισης φυσι-
κών φαινομένων όπως είναι ο σεισμός, οι ανεμοστρόβιλοι
και οι πολύ ισχυροί πλευρικοί άνεμοι. Σύμφωνα με την εφεύ-
ρεση αυτό επιτυγχάνεται με μια συνεχή προένταση (έλξη) της
δομικής κατασκευής προς το έδαφος και του εδάφους προς
την κατασκευή, κάνοντας αυτά τα δύο μέρη ένα σώμα. Αυτή τη
δύναμη προέντασης την εφαρμόζει ο μηχανισμός του υδραυ-
λικού ελκυστήρα δομικών έργων. Αυτός αποτελείται από ένα
συρματόσχοινο το οποίο διαπερνά ελεύθερο στο κέντρο τα κά-
θετα στοιχεία στήριξης της δομικής κατασκευής, καθώς και το
μήκος μιας γεώτρησης, κάτω απ’ αυτά. Στο κάτω άκρο του είναι
πακτωμένο με ένα μηχανισμό τύπου άγκυρας που πακτώνεται
στο ύψος της θεμελίωσης στα πρανή μιάς γεώτρησης και δεν
μπορεί να ανέλθει. Στο επάνω μέρος του, το συρματόσχοινο,
είναι πάλι πακτωμένο με ένα υδραυλικό μηχανισμό έλξης ο
οποίος το έλκει με μία συνεχή δύναμη ανόδου. Η ασκούμενη
έλξη στο συρματόσχοινο από τον υδραυλικό μηχανισμό και η
αντίδραση σ’ αυτήν την έλξη που προέρχεται από την πακτω-
μένη άγκυρα στο άλλο άκρο του γεννά την επιθυμητή θλίψη
στο δομικό έργο.
Άρθρο

ΕΥΕΡΓΕΤΙΚΑ ΑΠΟΤΕΛEΣΜΑΤΑ ΤΗΣ ΠΡΟΕΝΤΑΣΗΣ
Κατά την διέγερση του σεισμού ο φέρον οργανισμός (σκελετός
οικοδομής Μεταλλικός, Σύμμεικτος, ή από οπλισμένο σκυρό-
δεμα) με την σημερινή μέθοδο κατασκευής παρουσιάζει προ-
βλήματα τα οποία ευελπιστώ να λύσω με την ευρεσιτεχνία
Ποια είναι αυτά.
Τέμνουσες. Τι είναι και που υφίστανται πάνω στον
σκελετό της οικοδομής.
Οι τέμνουσες είναι δύο αντίθετες δυνάμεις, των οποίων οι
άξονες τους είναι παράλληλοι και περνούν ο ένας πλησίον του
άλλου, όπως π.χ το ψαλίδι.
Στον σκελετό οι τέμνουσες υφίστανται σε πολλά σημεία του.
Το κυριότερο σημείο που οι τέμνουσες είναι ψαθυρές είναι στο
κάτω μέρος της κολώνας του ισογείου, κοντά στο σημείο που
ενώνεται με τη βάση.
Ερώτηση...γιατί σε εκείνο το σημείο οι τέμνουσες είναι πιο
ψαθυρές?
Απάντηση...Διότι ο σεισμός έχει μια φορά επιτάχυνσης που τη μεταδίνει
στη βάση της κολώνας, διότι αυτή είναι θαμμένη στο έδαφος,
και το έδαφος την αναγκάζει να κινηθεί στον ρυθμό της επιτά-
χυνσης και φοράς του σεισμού.
Ο σκελετός αντιδρά σε αυτήν την κίνηση, λόγω αδράνειας και
στο κάτω σημείο της κολώνας του ισογείου δημιουργείται η τέμνουσα.
Το κάτω σημείο της κολώνας του ισογείου είναι πιο ψαθυρό,
για τρεις κύριους λόγους.
1) διότι έχει να διαχειριστεί περισσότερα στατικά φορτία του
φέροντος, από ότι έχουν να διαχειρισθούν οι άλλες κολω-
νες των πάνω ορόφων,
2) διότι έχει να διαχειρισθεί περισσότερες οριζόντιες φορτί-
σεις του σεισμού
3) διότι δεν υπάρχει καθόλου ελαστικότητα στο κάτω σημείο
της κολώνας του ισογείου, η οποία χρησιμεύει για την
απορρόφηση της ενέργειας του σεισμού, ενώ αυτή η ελα-
στικότητα υπάρχει στις πάνω κολώνες.
Οπότε για τους τρεις λόγους που ανέφερα συμπεραίνουμε ότι
οι τέμνουσες σε αυτές τις κολώνες του ισογείου είναι μεγα-
λύτερες από ότι είναι στις κολώνες των πάνω ορόφων, διότι
διαχειρίζονται μεγαλύτερες οριζόντιες και κάθετες φορτίσεις
κατά την διέγερση του σεισμού.
Τι κάνει η ευρεσιτεχνία για να λύσει το πρόβλημα της αστοχίας
που προκαλούν οι τέμνουσες στις κολώνες του ισογείου?
Ο μηχανισμός του υδραυλικού ελκυστήρα εφαρμόζει κάθετη
προένταση μεταξύ εδάφους δώματος. Ξέρουμε ότι η προέντα-
ση αυτή στα πλαίσια της επαλληλίας (μέσα στο πλαίσιο αντο-
χής των κάθετων στοιχείων ) έχει πολύ θετικά αποτελέσματα,
καθότι βελτιώνει τις τροχιές του λοξού εφελκυσμού.
Από την άλλη έχουμε και άλλο καλό... τη μειωμένη ρηγμά-
τωση λόγω θλίψης, κάτι που αυξάνει την ενεργό διατομή και
αυξάνει και τη δυσκαμψία της κατασκευής, οπότε και τις παρα-
μορφώσεις που προκαλούν αστοχία.
Oι συντελεστές που καθορίζουν τη σεισμική συμπεριφορά
των κατασκευών είναι πολυάριθμοι, και εν μέρει πιθανοτικού
χαρακτήρα. (Άγνωστη η διεύθυνση του σεισμού, άγνωστο
το ακριβές περιεχόμενο των συχνοτήτων της σεισμικής διέ-
γερσης, άγνωστη η διάρκειά της.) Ακόμα η μέγιστες πιθανές
επιταχύνσεις που δίδουν οι σεισμολόγοι, έχουν πιθανότητα
υπέρβασης, μεγαλύτερης του σχεδιαζόμενου 10%
Ο συσχετισμός των ποσοτήτων (αν μπορούμε να το δούμε
έτσι) «αδρανειακές εντάσεις - δυνάμεις απόσβεσης - ελαστικές
δυνάμεις - δυναμικά χαρακτηριστικά κατασκευής - αλληλεπί-
δραση εδάφους κατασκευής - επιβαλλομενη κίνηση εδάφους»
είναι μη γραμμικής κατεύθυνσης , και ανεξερεύνητες στη δυ-
ναμική των κατασκευών, με μη προφανές περιεχόμενο.
Συμπέρασμα
Η προένταση, (γενικά η θλίψη) αυξάνει την ικανότητα των
κάθετων στοιχείων ως προς τις τέμνουσες, που προκαλούν οι
φορτίσεις του σεισμού.
Εκτός από τις τέμνουσες που αναφέραμε πάρα πάνω, που
κατά κύριο λόγο εφαρμόζονται στα στοιχεία του ισογείου, οι
τέμνουσες εμφανίζονται και σε άλλα σημεία του φέροντος ορ-
γανισμού
Όπως, στους κόμβους (γωνίες) που σχηματίζονται στο σημείο
ένωσης, της κολώνας με την δοκό, ή της δοκού με την πλάκα,
ή της βάσης με την κολόνα, ή της πεδιλοδοκού με τη βάση, ή
της κοιτόστρωσης με την κολώνα.
Ποια είναι η αιτία που προκαλεί πρόσθετες τέμνουσες στους
κόμβους που αναφέραμε?
Ο πρόσθετος λόγος είναι η ταλάντωση, που επέρχεται στον
φέροντα σκελετό (κυρίως στον πολύ ψηλό σκελετό ) κατά τον
σεισμό.
Τι προβλήματα δημιουργεί η ταλάντωση στο κτήριο???
Αυτό είναι ένα μεγάλο ερώτημα, που για να απαντηθεί πρέπει
πρώτα να πούμε ότι η συχνότητα του κτηρίου αν είναι ίδια με

τη συχνότητα του σεισμού, τότε έχουμε συντονισμό
που δημιουργεί την μεγάλη ταλάντωση.
ΜΙΑ ΑΛΛΗ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗΝ ΣΕΙΣΜΙΚΗ
ΜΗΧΑΝΙΚΗ
Τι παθαίνει ο σκελετός της οικοδομής κατά την ταλάντωση
προερχόμενη από τις φορτίσεις του σεισμού και του αέρα?
Ας εξετάσουμε απλά βάση των νόμων της φυσικής, τα φορτία
που δέχεται ο σκελετός της οικοδομής κατά τη διέγερση του
σεισμού.
α) Αδράνεια.
Στα σώματα αρέσει να εξακολουθούν να κάνουν αυτό που
κάνουν.
Αν είναι ακίνητα, τους αρέσει να μένουν ακίνητα.
Αν κινούνται τους αρέσει να συνεχίζουν να κινούνται.
Συμπέρασμα. Όταν ο σεισμός κινείται κατά μία κατεύθυνση,
ο σκελετός της οικοδομής αντιδρά σε αυτήν την κίνηση, λόγω
της αδράνειας.
Αυτή η αντίδραση δημιουργεί τις τέμνουσες του ισογείου.
Αυτή η αντίδραση είναι που προκαλεί και την ταλάντωση, η
οποία εξαρτάται από την ιδιοσυχνότητα του σεισμού και του
εδάφους.
Αυτή η ταλάντωση τείνει να ανατρέψει και τον φέροντα σκελε-
τό με πολύ ψηλό κέντρο βάρους.
Δηλαδή ο φέροντας (κολώνες, δοκάρια, πλάκες) σαν δομική
οντότητα που του την προσφέρουν οι κόμβοι (γωνίες) αντιδρά
σε αυτή την ταλάντωση στους κόμβους.
Τι φορτία δέχονται οι κόμβοι κατά τη διέγερση του σεισμού?
Τα κύρια φορτία που δέχονται είναι δύο:
α) Την αδράνεια της μάζας (της πλάκας, των πραγμάτων, της
τοιχοποιίας,) τα οποία ονομάζουμε οριζόντιες φορτίσεις.
β) Τα φορτία της κατασκευής (το ίδιο βάρος της πλάκας των
πραγμάτων, της τοιχοποιίας) τα οποία ονομάζουμε κάθετες
φορτίσεις.
Ας εξετάσουμε τώρα πως ενεργούν πάνω στα στοιχεία που
αποτελούν τον κόμβο, οι οριζόντιες και οι κάθετες φορτίσεις.
Ένας κόμβος με γωνία 90 μοιρών για να παραμείνει ακέραιος,
πρέπει κατά τον σεισμό, να διατηρήσει την γωνία του [κόμβου
(Γ)] στις ίδιες μοίρες.
Η ταλάντωση όμως κατά τον σεισμό, όπως ξέρουμε, αλλάζει
την κλίση της κολώνας, και από κατακόρυφος που ήταν ο άξο-
νάς της, αλλάζει μερικές μοίρες ( εναλλάξ του κάθετου άξονα )
Η κολόνα κατά τη φάση που η κλίση της αλλάζει, αναγκάζει
μέσω του κόμβου που την ενώνει με τα άλλα στοιχεία το δοκό
να μετακινήσει και αυτή τον οριζόντιο άξονα της μερικές μοί-
ρες προς τα πάνω.
Εδώ υπάρχει το πρόβλημα του φέροντα κατά την ταλάντωση,
διότι τη στιγμή που η δοκός δέχεται φορτία με τάση ανόδου
από την κολόνα, τότε έρχεται σε αντίθεση με τα καθοδικά
φορτία του βάρους του κτηρίου.
Τα καθοδικά φορτία υπερνικούν τα φορτία ανόδου της δοκού,
με αποτέλεσμα η δοκός να αναγκάζεται να παραμείνει οριζό-
ντια.
Η κολώνα όμως, δεν παραμένει οριζόντια, (αλλάζει μερικές
μοίρες ο κάθετος άξονας της).
Το αποτέλεσμα είναι ο κόμβος που προσδίδει δομική οντότητα
στα στοιχεία αυτά να τείνει από 90 μοίρες που είναι, να μεταβάλλεται
, εναλλάξ κατά την ταλάντωση,και να καταπονείται με τέμνουσες.
Ο κόμβος όμως είναι πολύ άκαμπτος και γερός, και αντί να α
λάξει μοίρες, μεταδίδει τα καθοδικά και οριζόντια φορτία στις
ελαστικές διατομές των στοιχείων (διατομή κάτοψης κολόνας,
διατομή δοκού και πλάκας) δημιουργώντας ροπές, όπου αυτές
δημιουργούν τις τέμνουσες.
Οπότε στην πράξη δεν σπάει ο κόμβος, αλλά το πιο ψαθυρό
στοιχείο λίγο πιο πέρα από τον κόμβο.
Την ψαθυρότητα τη δημιουργεί η αντίθεση των φορτίων, στο

λαιμό της κολώνας και της δοκού, δημιουργώντας τις τέμνου-
σες.
Πιο είναι πιο ψαθυρό στοιχείο, η κολώνα ή η δοκός?
Φυσικά είναι η κολόνα, διότι αυτή έχει μικρότερη διατομή από
τη διατομή της δοκού, διότι η διατομή της δοκού είναι ένα
σώμα ακέραιο με τη διατομή της πλάκας, και οι δύο μαζί
υπερτερούν της διατομής της κολόνας.
Και όπως ξέρουμε, μεγαλύτερη διατομή, περισσότερη αντοχή
ως προς τις τέμνουσες.
Από ότι αναφέραμε πιο πάνω, οι κύριες φορτίσεις που είναι
ψαθυρές για τον φέροντα οργανισμό κατά τη διέγερση του
σεισμού, είναι δύο.
α) Οριζόντιες φορτίσεις (προερχόμενες από την αδράνεια που
σε συνδυασμό και με την ιδιοσυχνότητα προκαλεί την τα-
λάντωση)
β) Κάθετες φορτίσεις (προερχόμενες από το ίδιον βάρος του
φέροντος, της τοιχοποιίας, και των πραγμάτων)
Ακόμα αναφέραμε πιο πάνω, ότι η κολώνα κατά τον σεισμό,
μετατοπίζει τον κάθετο άξονά της πότε δεξιά πότε αριστερά,
ενώ η δοκός διατηρεί τον οριζόντιο άξονά της λόγο των κάθε-
των φορτίσεων.
Συμπέρασμα
Αν μπορέσουμε να σταματήσουμε τον κάθετο άξονα της κο-
λώνας να αλλάζει μοίρες εναλλάξ, (λόγω πλάγιων φορτίσεων)
τότε δεν θα υπάρχουν τέμνουσες στα στοιχεία της κολόνας και
της δοκού, διότι ο κόμβος θα παραμείνει στις 90 μοίρες.
Πως μπορούμε να σταματήσουμε τον κάθετο άξονα της κολό-
νας να αλλάζει μοίρες εναλλάξ?
Μπορούμε με τρεις τρόπους
α) Ή να πακτώσουμε τη βάση με το έδαφος.
β) Ή να πακτώσουμε το δώμα με το έδαφος.
γ) Ή να προ εντείνουμε το δώμα με το έδαφος στα πλαίσια της
επαλληλίας (στα πλαίσια αντοχής της κολόνας στη θλίψη
και την κάμψη)
Βασική προυπόθεση για να εφαρμόσουμε τους πάρα πάνω
τρεις τρόπους, είναι οι κολώνες να μην είναι πολύ μικρές, ή
να είναι αντί κολώνες τοιχία.
(μεγάλη διατομή κάτοψης σε μήκος)
Γιατί οι κολώνες τοιχία πρέπει να έχουν μεγάλη διατομή κάτο-
ψις σε μήκος?
Για τέσσερις κύριους λόγους.
α) Για να μην κάμπτονται εύκολα κατά την προένταση (όπως
οι μικρές κολώνες)
β) Για να αντέχουν να διαχειριστούν και τα στατικά φορτία,
και τα πρόσθετα φορτία της προέντασης.
γ) Για να μπορούμε να κάνουμε εύκολα την κατάλληλη διαστα-
σιολόγηση στη διατομή κάτοψις.
Δηλαδή τις κολόνες τοιχία, μπορούμε σε ένα σχέδιο κάτο-
ψις ενός φέροντος οργανισμού να τις τοποθετήσουμε κατά
διαφορετικές διευθύνσεις, έτσι ώστε από όποια κατεύθυν-
ση και αν έλθει ο σεισμός να φέρουν αντίσταση.
δ) Όταν η διατομή του τοιχίου κατά μήκος είναι μεγάλη, μπο-
ρούμε να το πακτώσουμε στα δύο άκρα του.
Η πάκτωση ή προένταση των δύο άκρων του τοιχίου, είναι
πολύ καλύτερη από ότι η πάκτωση μιας κολώνας στο κεντρικό
σημείο της, γιατί κατά την ταλάντωση του τοιχίου στις πλάγι-
ες φορτίσεις του σεισμού, το ένα άκρο του τοιχίου προσπαθεί
να σηκώσει το άλλο άκρο του.
Αν είναι πακτωμένο, ή καλύτερα προεντεταμένο στα δύο άκρα
του, αυτή η τάση ανόδου της βάσης του τοιχίου δεν μπορεί να
γίνει, διότι είναι προεντεταμένη με το έδαφος.
Οπότε αφού δεν μπορεί να ταλαντωθεί το τοιχίο, καταργούμε
την ταλάντωση (το κάνουμε άκαμπτο).
Οπότε καταργούμε στην πράξη....
α) Τη μετατόπιση του κάθετου άξονα της κολώνας, που συνε-
πάγεται την κατάργηση ....
β) των ροπών στους κόμβους που προκαλούν τις τέμνουσες
των κολωνών και των δοκών,καθώς και τα λοξά βέλη ( λοξές ρωγμές )
Με λίγα λόγια, το πακτωμένο ή προεντεταμένο τοιχίο, μπορεί
μόνο του (χωρίς τη βοήθεια των κόμβων) να παραλάβει τις
οριζόντιες φορτίσεις του σεισμού, χωρίς να καταργεί και την
πρόσθετη αντίσταση των κόμβων πάνω στις πλάγιες φορτί-
σεις.

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
Αν πάρουμε δύο πλαίσια τα οποία είναι ενωμένα στα άκρα
τους με δύο χιαστί συνδέσμους (όπως οι σιδεροσκαλωσιές των οικοδο-
μών)
Τα δύο πλαίσια αποκτούν
α) Δομική οντότητα.
β) Ακαμψία.
Δεν σταματούν όμως την ταλάντωση την οποία μπορεί να δημι-
ουργήσει η επιτάχυνση.
Κατά την ταλάντωση που υφίσταται κατά τον σεισμό, (κυρίως
το ψηλό κτήριο με πολύ υψηλό κέντρο βάρους κατασκευασμέ-
νο από σιδεροκατασκευή,) το χιαστί (Χ)διαμοιράζει καλύτερα
τα καθοδικά φορτία του φέροντα από ότι ο κόμβος σχήματος
(Γ).
Η δομική οντότητα των δύο πλαισίων που τους προσδίδει η
ένωσή τους με τα χιαστί, κατά την ταλάντωση, δεν καταπονείται
όπως καταπονούνται οι κόμβοι σχήματος (Γ) από τα καθοδικά
φορτία της κατασκευής.
Ο λόγος είναι ο εξής:
Κατά την ταλάντωση της σιδηροκατασκευής όταν αυτή είναι
δομικά άκαμπτη, δημιουργείται κενό στήριξης του ενός πλαι-
σίου από το έδαφος, διότι το ένα πλαίσιο σηκώνει το άλλο
εναλλάξ.
Οπότε κατά τη χρονική περίοδο της ταλάντωσης της σκαλωσιάς, όπου το ένα πλαίσιο είναι
αστήριχτο από το έδαφος, και το άλλο είναι στηριγμένο σε αυτό, υφί-
σταται μία ροπή στους κόμβους της κατασκευής λόγω των καθοδικών φορτί-
ων, προερχόμενα από το βάρος της κατασκευής.
Στην περίπτωση των κόμβων (Γ) αυτή η ροπή ολόκληρου
του κτηρίου μετατρέπεται αυτόματα σε ροπή των κόμβων (Γ) η
οποία δημιουργεί τέμνουσες στα άκρα του.
Στην περίπτωση των χιαστί (Χ) αυτή η ροπή μεταφέρεται δια-
γώνια από το άνω μέρος του αστήριχτου πλαισίου,στην κάτω
γωνία του στηριγμένου πλαισίου, μέσω της μπάρας του χιαστί.
Αν η μπάρα του χιαστί αντέχει την κάμψη που του εξασκούν
τα καθοδικά φορτία που μετατρέπονται σε ροπή, τότε δεν υπάρχει
κανένα πρόβλημα στη δομική οντότητα του κτηρίου.
Πάντως τα χιαστί (Χ) προσδίδουν καλύτερη δομική οντότητα
στην κατασκευή από ότι προσδίδουν οι κόμβοι.
Φυσικά ο συνδυασμός και των δύο, τρόπων στήριξης ( Χ ) και ( Γ ) είναι
πιο ισχυρός.
Το ερώτημα είναι αν μπορούμε να κάνουμε αυτή την σιδηρο-
κατασκευή ακόμα πιο ισχυρή απο ότι αυτή είναι, με τον
συνδυασμό των δύο τρόπων στήριξης (Χ) και (Γ) μαζί.
Ερώτηση
Υπάρχει και άλλος τρόπος στήριξης, τον οποίο θα προ-
σθέσουμε στους άλλους δύο τρόπους και οι τρις τρόποι μαζί
να κατασκευάσουν το απόλυτο αντισεισμικό σύστημα των σι-
δηροκατασκευών?
Απάντηση
Ναι υπάρχει.
Αναφέραμε ότι την ψαθυρή αστοχία στις κατασκευές, την δη-
μιουργούν οι ροπές, προερχόμενες από δύο διασταυρώμενες φορτίσεις
κατά την ταλάντωση οι οποίες είναι :
α) Οι αδρανειακές εντάσεις
β) τα καθοδικά αστήριχτα φορτία της κατασκευής,που δημι-
ουργούνται κατά τη φάση μονομερούς ανόδου αυτής.
Τα καθοδικά φορτία πάντα υπάρχουν ... οι ροπές όμως δεν
υπάρχουν αν αυτά τα καθοδικά φορτία ισορροπούν με την
αντίθετη φορά των δυνάμεων του εδάφους
Οι ροπές εμφανίζονται μόνο όταν τα καθοδικά φορτία είναι
χωρίς την αντίδραση των δυνάμεων της βάσης. Δηλαδή κατά
την ταλάντωση.
Πακτώνοντας, ή προεντείνωντας την σιδηροκατασκευή με το
έδαφος, καταργούμε στην ουσία τα αστήριχτα καθοδικά φορ-
τία που δημιουργούν τις ροπές στους κόμβους.
Συμπέρασμα
H αντισεισμική μέθοδος κατασκευών καθώς και ο μηχανισμός του ελκυστήρα, ( Seismic stop ) εφαρμόζεται και τοποθετείτε
σε σιδηροκατασκευέ ς με χιαστί (Χ) και κόμβους (Γ) και είναι ο
τρίτος τρόπος ο οποίος συνδυάζετε άψογα με τους άλλους δύο
ώστε να κατασκευάσουμε την απόλυτη αντισεισμική οντότη-
τα σιδηροκατασκευής, που συν των άλλων είναι και ελαφριά
που συνεπάγεται μικρότερη αδράνεια,οπότε και λιγότερες
φορτίσεις, και μεγαλύτερη αντοχή στις τέμνουσες που έχει
μία σιδηροκατασκευή, από ότι έχει ένας σκελετός οπλισμένου
σκυροδέματος.

Η ευρεσιτεχνία μπορεί να χρησιμοποιηθεί και σαν προεντεταμένο αγκύριο, για την βελτίωση και την συγκράτηση των πρανών του εδάφους.
Π.Χ http://postimage.org/image/29l3p1xpg/
Γενικά αντικαθιστά όλα τα είδει πασσάλων προσφέροντας καλύτερη πρόσφυση με το έδαφος λόγο υδραυλικής πίεσης.
Γενικά είναι ένας μηχανισμός ο οποίος πακτώνεται στα πρανή της γεώτρησης, λόγο των θλιπτικών δυνάμεων που εξασκεί πλάγιο αξονικά αυτής, και κατ αυτόν τον τρόπο μπορεί να δεχθεί φορτίσεις κάθετες, και ανοδικές, προστατεύοντας τις κατασκευές από την καθίζηση και την ταλάντωση.
Μπορεί να τοποθετηθεί τόσο σε υπό κατασκευή, όσο και σε υφιστάμενες κατασκευές διάφορων φορέων όπως είναι όλοι οι φέροντες οργανισμοί κτηρίων, γέφυρες, φράγματα, κ.λ.π.
Χρησιμεύει και για την προστασία των ελαφριών κατασκευών από τους ανεμοστρόβιλους που πλήττουν κυρίως την Αμερική, αλλά και την προστασία γενικά των μεγάλων κατασκευών, από τις φορτίσεις του αέρα.
Η εφαρμοσμένη τεχνολογία σήμερα απλός εδράζει την κατασκευή στο έδαφος.
Η ευρεσιτεχνία την ενώνει με το έδαφος, ( μέσω προέντασης ) κάνοντας αυτά τα δύο ένα, (σαν σάντουιτς)
Αυτό γίνεται πρώτη φορά παγκοσμίως.
Για μένα αυτή η ένωση της κατασκευής με το έδαφος, έχει ευεργετικά αποτελέσματα διότι εκτός των αναφερθέντων καλών χρησιμεύει ακόμα για να....
α) Εξασφαλίζει δομική οντότητα εδάφους κατασκευής.
β) Κατά την διέγερση του σεισμού,αλλάζει ευεργετικά την κατεύθυνση στις φορτίσεις και στις τέμνουσες, και τις κατευθύνει κάθετα του στοιχείου, όπου η διατομή του είναι μεγάλη και ισχυρή.
γ) Οι δυνάμεις απόσβεσης είναι υδραυλικές
δ) Απαλείφει την διαφορά φάσης εδάφους κατασκευής
ε) Απαλείφει την διαφορά φάσης των ορόφων
ζ) Συνεργάζεται με τα εφέδρανα, ώστε να εξασφαλίσει οριζόντια και κάθετη σεισμική μόνωση.
η) Αυξάνει τα δυναμικά χαρακτηριστικά της κατασκευής.
θ) χαμηλώνει την πιθανότητα της ιδιοσυχνότητας στις κατασκευές.
ι) Λόγο υδραυλικής πίεσης που εξασκεί ο μηχανισμός του ελκυστήρα, κρατάει πάντα τον τένοντα τανυσμένο, διορθώνοντας αυτόματα κατ αυτόν τον τρόπο την έρπη του χάλυβα, όπου υφίσταται κατά τη μακροπρόθεσμη προέντασή του, και διορθώνει αυτόματα την ένταση πάκτωσης της άγκυρας με τα πρανή της γεώτρησης, ακόμα και όταν αυτά υποχωρήσουν λόγο χαλαρότητας των πρανών της γεώτρησης.
Το σύστημα είναι υπό αριθμητική διερεύνηση ( σε επίπεδο υπολογιστηκής προσομοίωσης ) από το εργαστήριο στατικής και αντισεισμικών ερευνών του Ε.Μ.Π, με τα πρώτα αποτελέσματα να είναι αρκετά ενθαρρυντικά.

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 05 Αυγ 2012 15:44    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Φθίνουσα αρμονική ταλάντωση μέσω του υδραυλικού συστήματος της ευρεσιτεχνίας.

Επειδή η σεισμική φόρτιση είναι επιβαλλόμενη
παραμόρφωση και όχι επιβαλλόμενη φόρτιση, στο σχεδιασμό των φορέων
υπεισέρχονται και παραμορφωσιακά μεγέθη του φορέα.

Η ταλάντωση ευθύνεται για αυτά τα παραμορφωσιακά μεγέθη του φορέα.
Οι ταλαντώσεις και τα παραμορφωσιακά μεγέθη επιβραδύνονται από δυνάμεις απόσβεσης.

Στην επιβαλλόμενη
παραμόρφωση που προκαλεί η ταλάντωση η ακτίνα
καμπυλότητας του φορέα, ( κολόνας ) έχει την τάση να μεγαλώνει.

Το υδραυλικό σύστημα της εφεύρεσης παραλαμβάνει εσωτερικά ενεργειακές δυνάμεις, διότι εμποδίζει ελαστικά την ακτίνα καμπυλότητας του φορέα να μεγαλώσει, με
αποτέλεσμα η ενέργεια του ταλαντούμενου φορέα να μειώνεται με την πάροδο του χρόνου, ( διότι αυτή η ενέργεια απορροφάται σταδιακά από το υδραυλικό σύστημα,) και η
ταλάντωση μετατρέπετε σιγά σιγά σε φθίνουσα αρμονική ταλάντωση.

Δηλαδή η δυσκαμψία του φορέα, οπότε και η επιβαλλόμενη
παραμόρφωση, μπορεί να ελεγχθεί ( από το αυτό ρυθμιζόμενο υδραυλικό σύστημα της ευρεσιτεχνίας ) τόσο στον δείκτη πλαστιμότητας
μετακινήσεων ( το βέλος του φορέα στην κρίσιμη διατομή, )

όσο και στο δείκτης πλαστιμότητας
καμπυλοτήτων ( ακτίνα καμπυλότητας του φορέα, κολόνες )

Βέβαια προυπόθεση είναι η στάθμη επιπόνησης της δυσκαμψίας του φορέα να είναι μικρότερη από τη στάθμη αστοχίας.

Το μέτρο της επιβράδυνσης της απόσβεσης, εξαρτάται συνήθως
από την ταχύτητα της κίνησης.
Η υδραυλική επιβράδυνσης της απόσβεσης είναι
ανάλογη της ταχύτητας παραμόρφωσης της ακτίνα καμπυλότητας του φορέα, και έχει φορά αντίθετη από αυτή.

Υποθέτω ότι το μέτρο της επιβράδυνσης της απόσβεσης, δεν
είναι μόνο συνάρτηση της ταχύτητας, αλλά και της πίεσις των υδραυλικών μέσα στον θάλαμο του υδραυλικού συστήματος.

Θα ήταν χρήσιμο αν μπορούσαμε να ελέγξουμε τα παραμορφωσιακά μεγέθη του φορέα?

Απάντηση
Ξέρουμε ότι πλαστιμότητα είναι η, υπό ένταση, συμπεριφορά του Ο.Σ. (εν προκειμένω-γιατί μπορεί να αναφέρεται και σε άλλο υλικό-χωρίς καν σίδερα...), χάρη στην οποία το υλικό δύναται, εντός κάποιων ορίων, να δέχεται αυξανόμενη τάση ενώ διατηρεί σχεδόν σταθερή την παραμόρφωσή του.

Ένα μη πλάστιμο υλικό αστοχεί απότομα (δηλαδή χωρίς προειδοποίηση της επικείμενης αστοχίας) μόλις αναλάβει το μέγιστο φορτίο του.

Υπάρχει η πλαστιμότητα του σκυροδέματος και του χάλυβα,(αντοχή χάλυβα στην ολκιμότητα)
η πλαστιμότητα των διατομών, η πλαστιμότητα δοκών και υποστυλωμάτων, καθώς και οι
παράμετροι που την επηρεάζουν.

Τι γίνετε όμως αν η παραμόρφωση περάσει τα όρια της πλαστιμότητας, και περάσει στην πλαστική μη ανατρέψιμη περιοχή?
Απλά θα έχουμε αστοχία, διότι θα έχουμε υπερβεί τα πλάστιμα μεγέθη.
Ξέρουμε ότι τα παραμορφωσιακά μεγέθη του φορέα εξαρτώνται από το πλάτος της ταλάντωσης.
Η μείωση του πλάτους ονομάζεται απόσβεση.
Αυτή την απόσβεση της ταλάντωσης την αναλαμβάνει ο υδραυλικός μηχανισμός της ευρεσιτεχνίας ( διότι δεν αφήνει να μεγαλώσει την ακτίνα καμπυλότητας του φορέα και της κολόνας ) και την μετατρέπει σε μηχανική τριβή, οπότε θερμότητα.
Γενικά ο υδραυλικός ελκυστήρας είναι ένας πλάστιμος μηχανισμός απορρόφησης και απόσβεσης της ταλαντωμένης ενέργειας.
Κατ αυτόν τον τρόπο μπορούμε να έχουμε ελεγχόμενη πλαστιμότητα του φέροντα και της ακτίνας καμπυλότητας των κάθετων στοιχείων.
Τι γίνεται όμως αν οι τάσεις ξεπεράσουν τα όρια πλαστιμότητας του υδραυλικού μηχανισμού?
Πως τότε ο υδραυλικός μηχανισμός, θα κρατήσει τον φέροντα και τα κάθετα στοιχεία, ώστε αυτά να μην ξεπεράσουν την στάθμη αστοχίας?
Πολύ απλά.
Ο υδραυλικός μηχανισμός φέρει στο πάνω μέρος του εμβόλου, ένα εξωτερικό δακτύλιο, ο οποίος είναι ένα με το έμβολο.
Οπότε όταν ο φορέας ταλαντώνετε το έμβολο εισχωρεί μέσα στο χιτώνιο, μέχρι το σημείο που ο δακτύλιος του εμβόλου δεν χωράει να μπει μέσα στο έμβολο.
http://www.youtube.com/watch?v=KPaNZcHBKRI
Κατ αυτόν τον τρόπο, ο δακτύλιος ορίζει την στάθμη ταλάντωσης του φέροντα, σταματώντας αυτόν, λίγο πριν από το επιτρεπτό όριο πλαστιμότητάς του.

Σε υπέρ κατασκευές με αυξημένες ανάγκες ελεγχόμενης πλαστιμότητας, χρησιμοποιούμε μία άλλη μέθοδο κατασκευής.
Αντί να προεντείνομαι όλα τα κάθετα στοιχεία με το έδαφος, προεντείνομαι μόνο ένα κεντρικό φρεάτιο, ή δύο φρεάτια στα άκρα του φέροντα.
Προσέχουμε τα προτεταμένα φρεάτια να μην έρχονται σε επαφή με τον φέροντα.
Αυτό το επιτυγχάνομαι με την κατασκευή σεισμικού αρμού στο ύψος των πλακών, που περικλείουν ελαστομερεί υλικά.
Κατ αυτόν τον τρόπο, μπορούμε να τοποθετήσουμε και εφέδρανα ώστε να έχουμε οριζόντια σεισμική μόνωση του φορέα, αλλά συγχρόνως να επιτυγχάνομαι και την ελεγχόμενη πλαστιμότητα του κάθετου άξονα του φορέα.
Δες αυτή την μέθοδο στο βίντεο http://www.youtube.com/watch?v=KPaNZcHBKRI

Έχει αποδειχθεί ότι ο ρόλος της πλαστιμότητας και της μετακίνησης είναι σημαντικότερος από την αντοχή που διαθέτει ο φορέας.

Γιατί όμως συμβαίνει αυτό θα προσπαθήσω να εξηγήσω πάρα κάτω.

Η διατομές των μικρών υποστυλωμάτων είναι πιο πλάστιμες από τις μεγαλύτερες διατομές τοιχίων.
Σε μία ταλάντωση του φορέα, στα μικρά υποστυλώματα καταπονείτε πιο πολύ η ακτίνα καμπυλότητας.

Στα μεγάλα υποστυλώματα λόγο της μεγάλης τους αντοχής και δυσκαμψίας, καταπονούνται πιο πολύ οι κόμβοι.
Οι κόμβοι διανέμουν τέμνουσες λόγο των ροπών που προκαλεί η ταλάντωση.

Η διατομή κάτοψης των μεγάλων υποστυλωμάτων αντέχουν αυτές τις τέμνουσες.

Η διατομή όμως της κοιτόστρωσης και των άλλων κόμβων με τις δοκούς ?

Για τους άλλους κόμβους που σχηματίζονται από την συμβολή των υποστυλωμάτων και δοκών, αναφέρθηκα πρίν.
Ας εξετάσουμε τώρα τις τέμνουσες που δημιουργούνται μεταξύ του μεγάλου υποστυλώματος και της κοιτόστρωσης.
Για μένα αυτός ο κόμβος κρύβει την αλήθεια στο γιατί ο ρόλος της πλαστιμότητας και της μετακίνησης είναι σημαντικότερος από την αντοχή που διαθέτει ο φορέας.

Ενώ οι κόμβοι που σχηματίζονται από την συμβολή των υποστυλωμάτων και δοκών καταπονούνται από τις ροπές που δημιουργούνται από την αδράνεια του φορέα και τα στατικά φορτία, ο κόμβος μεταξύ του μεγάλου υποστυλώματος και της κοιτόστρωσης δέχεται καταπόνηση από την αδράνεια του φορέα και τις ανοδικές εφελκυστικές τάσεις του μεγάλου υποστυλώματος.

Αυτό συμβαίνει γιατί το υποστύλωμα έχει μεγάλες αντοχές και μικρή πλαστιμότητα οπότε αντί να έχει μεγάλη ακτίνα καμπυλότητας, αυτό λόγο δυσκαμψίας ταλαντεύεται δημιουργώντας στην κοιτόστρωση θλίψη από την μία πλευρά, και εφελκυσμό από την άλλη.

Αυτές οι δυνάμεις δημιουργούν μία ροπή η οποία έχει διαφορετική κατεύθυνση από τις άλλες των άλλων κόμβων.

Δες βίντεο http://www.youtube.com/watch?v=C2Z1zmrJhsc&eurl=http%3A%2F%2Fmy...ean.gr%2Fforum%2F



Στο 53 λεπτό μπορείτε να δείτε τον φορέα που ταλαντεύετε και παρατηρείστε.

α) Την δυσκαμψία του τοιχίου, εν σχέση με τα άλλα υποστυλώματα που παρουσιάζουν μεγάλη ακτίνα καμπυλότητας.
β) Το τοιχίο που ανασηκώνεται εναλλάξ.

Συμπέρασμα
α) Αν το τοιχίο ήταν πακτωμένο με την κοιτόστρωση αυτή η πάκτωση θα δημιουργούσε τέμνουσες στην κοιτόστρωση, λόγο του εφελκυσμού του τοιχίου που εφαρμόζετε στην κοιτόστρωση, και των στατικών φορτίων της κοιτόστρωσης

β) Αν το τοιχίο ήταν πακτωμένο ή προτεταμένο με το έδαφος, η κοιτόστρωση δεν θα υφίσταται καμία τέμνουσα. ( ή τουλάχιστον θα είχε ελάχιστες τέμνουσες )

Διότι ο μηχανισμός του υδραυλικού ελκυστήρα


προστατεύει την κοιτόστρωση διότι εφαρμόζει αντίθετες τάσεις στον εφελκυσμό, αλλά και αντίθετες τάσεις στα θλιπτικά φορτία που δέχεται η άλλη πλευρά του τοιχίου.

Όπως ξέρουμε από την φυσική, οι αντίθετες δυνάμεις ισορροπούν.
Όταν οι δυνάμεις ισορροπούν, δεν έχουμε ροπές, που δημιουργούν τις τέμνουσες.

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 05 Αυγ 2012 15:47    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Αν είχατε να διαλέξετε έναν φορέα από τους πάρα κάτω ποιόν θα διαλέγατε ?

α) φορέα απλά εφαπτόμενος πάνω στο έδαφος?
β) φορέα προτεταμένο με το έδαφος?
γ) φορέα πακτωμένο με το έδαφος?
δ) φορέα ελάχιστα προτεταμένο με το έδαφος?

Θέλω την γνώμη σας.
Εγώ θα προσπαθήσω να αναλύσω τα πλεονεκτήματα και τα μειονεκτήματα του κάθε φορέα ξεχωριστά ώστε να εξαχθούν χρήσιμα συμπεράσματα.

α) φορέας απλά εφαπτόμενος πάνω στο έδαφος της θεμελίωσης

Αυτός ο φορέας υπόκειται στην πεπατημένη μέθοδο σχεδιασμού των κατασκευών και χωρίζεται σε δύο κατηγορίες.
α) Τους πλάστιμους φορείς
β) Στους μονολιθικούς ή δύσκαμπτους φορείς.

Οι πλάστιμοι φορείς έχουν το πλεονέκτημα να παραλαμβάνουν τάσεις εντός κάποιον ορίων κρατώντας σταθερή την παραμόρφωσή τους.
Το μειονέκτημα είναι ότι ο πλάστιμος φορέας αποτελείτε από υποστυλώματα και πλακοδοκούς και είναι ημιτελής, με αποτέλεσμα να μην μπορούμε να κατοικίσουμε σε αυτόν χωρίς την πλήρωση των κενών διαστημάτων.

Δηλαδή αν στον δοκιμαζόμενο φορέα του βίντεο
http://www.youtube.com/watch?v=C2Z1zmrJhsc&feature=related
τοποθετήσουμε τοίχους ή τζάμια, αυτά θα παρουσιάσουν αστοχίες από την μια, και θα αλλάξουν την συμπεριφορά του φορέα από την άλλη.
Συμπέρασμα
α) Οι πλάστιμοι φορείς δημιουργούν αστοχίες στην τοιχοποιία μετά από ισχυρές σεισμικές δονήσεις.
β) Τα όρια αντοχής του φορέα είναι εντός κάποιων ορίων.
γ) Καταπονούν τόσο τα υποστυλώματα στο τόξο καμπυλότητας, όσο και τους κόμβους με τέμνουσες.

Για μένα δεν προτείνετε ως η ιδανική μέθοδος σχεδίασης των κατασκευών.

Μονολιθικές κατασκευές

Αυτές οι κατασκευές υποφέρουν στην τοιχοποιία που είναι και φέροντας, από λοξές τέμνουσες οι οποίες υφίστανται από τον συνδυασμό αδράνειας και μεγάλων στατικών φορτίων.

Για μένα είναι η πιο ψαθυρή κατασκευή από όλες, ιδίως στις πολυόροφες κατασκευές και αστοχεί απότομα, ακόμα και αν η κατασκευή είναι εξολοκλήρου από Ο.Σ
β) φορέας προτεταμένος με το έδαφος

Αυτός ο φορέα έχει πάρα πολλά πλεονεκτήματα αν σχεδιαστεί σωστά.
Έχει όμως και μειονεκτήματα.
Πλεονεκτήματα

Αν σχεδιασθεί σωστά, μπορεί να είναι η πιο καλή λύση από όλες τις άλλες.

α) Αυξάνει την αντοχή του φορέα στην τέμνουσα βάσης.

β) Πάρα πολύ μικρές παραμορφώσεις του φορέα, οπότε και απουσία επισκευών μετά τον σεισμό.
Αυτό είναι πολύ καλώ για δημόσια κτήρια όπου οι επισκευές τα κάνουν να δυσλειτουργούν π.χ Νοσοκομεία, δημόσια κτήρια, κρατικοί φορείς, γέφυρες, φράγματα κ.λ.π

γ) μικρή καταπόνηση των κόμβων από ροπές και τέμνουσες.

δ) Οικονομία στις επισκευές των κτηρίων μετά τον σεισμό.

Μειονεκτήματα.
Όσο κερδίζουμε σε αντοχή, με την προένταση, χάνουμε σε πλάστιμη συμπεριφορά των υλικών και των διατομών.
Βέβαια αν η στάθμη επιπόνησης που δέχεται ο άκαμπτος προτεταμένος φορέας, είναι μικρότερη από την στάθμη αστοχίας, τότε δεν υπάρχει πρόβλημα.
π.χ τα προκατασκευασμένα από Ο.Σ ή τα τοιχία και τα φρεάτια με μεγάλη διατομή κάτοψης, αν είναι προτεταμένα μεταξύ δώματος και εδάφους, τότε δεν υπάρχει κανένα απολύτως πρόβλημα.

Αν όμως δεν είναι προτεταμένα, ( μεταξύ εδάφους δώματος ) και έχουν και μεγάλη διατομή κάτοψης, τότε δημιουργούν τέμνουσες στους κόμβους.
Ξέρουμε ότι ο κόμβος αποτελείτε από οριζόντια και κάθετα στοιχεία, στα οποία το πιο ευάλωτο στοιχείο του κόμβου αστοχεί, και στην περίπτωσή μας θα αστοχήσει το οριζόντιο στοιχείο. ( η δοκός )

Συνιστάτε αυτή η μέθοδος κατασκευής από εμένα, όταν έχουμε φορείς που αποτελούνται από μεγάλα κάθετα στοιχεία με μεγάλη διατομή κάτοψης, ή σε όλες τις υπόλοιπες μονολιθικές κατασκευές αποτελούμενες από φορέα τοιχοποιίας.

γ) φορέας πακτωμένος με το έδαφος

Αυτή η λύση είναι η οικονομικότερη χρησιμοποιώντας τον ελκυστήρα. ( όχι τον υδραυλικό ελκυστήρα )
Βασικά ο ελκυστήρας αποτελείται από τον ίδιο μηχανισμό πάκτωσης που έχει ο υδραυλικός, αλλά η προέντασή του εφαρμόζετε με την υπάρχοντα μέθοδο προεντάσεων.

Με αυτόν τον μηχανισμό εξασκούμε ισχυρή προένταση μεταξύ του επιπέδου θεμελίωσης ( επιφάνεια εδάφους ) και γεώτρησης.
Αφού ολοκληρωθεί αυτή η εργασία, το εξέχον τμήμα του τένοντα πακτώνεται ισχυρά μέσα στο Ο.Σ της θεμελίωσης, κατά την κατασκευή της.
Αυτός ο τρόπος είναι οικονομικός διότι αποφεύγουμε την δίοδο του τένοντα μέσα από τα κάθετα στοιχεία, και η κατασκευή του μηχανισμού του ελκυστήρα είναι οικονομικότερη του υδραυλικού μηχανισμού.

Δεν εφαρμόζουμε καμία προένταση στον φέροντα.
Αυτή η μέθοδος απλός πακτώνει τον φέροντα στο έδαφος στο επίπεδο της θεμελίωσης, ώστε να βοηθήσει την κοιτόστρωση και τους κόμβους στις ροπές που προκαλούν οι τέμνουσες.

Πλεονεκτήματα

α) Οικονομική κατασκευή.
β) προστατεύει την κοιτόστρωση και τους κόμβους από τέμνουσες διότι εφαρμόζει αντίθετες τάσεις στον εφελκυσμό, αλλά και αντίθετες τάσεις στα θλιπτικά φορτία που δέχεται η άλλη πλευρά του τοιχίου.
γ) Μπορούμε να τοποθετήσουμε περισσότερους μηχανισμούς πάκτωσης στην επιφάνεια θεμελίωσης της κοιτόστρωσης.

Μειονεκτήματα.
Χάνουμε τα καλά της προέντασης πάνω στον φέροντα.
Ξέρουμε ότι η προέντα-
ση αυτή στα πλαίσια της επαλληλίας (μέσα στο πλαίσιο αντο-
χής των κάθετων στοιχείων ) έχει πολύ θετικά αποτελέσματα,
καθότι βελτιώνει τις τροχιές του λοξού εφελκυσμού.
Από την άλλη έχουμε και άλλο καλό... τη μειωμένη ρηγμά-
τωση λόγω θλίψης, κάτι που αυξάνει την ενεργό διατομή και
αυξάνει και τη δυσκαμψία της κατασκευής, οπότε και τις παρα-
μορφώσεις που προκαλούν αστοχία.
Ακόμα βελτιώνει σημαντικά την τέμνουσα βάσης.

Αυτή η μέθοδος προτείνεται για χαμηλές κατασκευές 2 με 5 ορόφων, με μεγάλα τοιχία όπου η ταλάντωση είναι μικρή.

δ) φορέας ελάχιστα προτεταμένος με το έδαφος ( πλάστιμος )

Πολλοί είναι οι μηχανικοί που θεωρούν την πλαστιμότητα αναγκαία.
Έτσι και αλιώς όλοι οι φορείς είναι σε κάποιο βαθμό πλάστιμοι, ακόμα και αν είναι προτεταμένοι.
Η ευρεσιτεχνία προσφέρει και αυτήν την δυνατότητα.

Δηλαδή ο φορέας να μπορεί να έχει μία αρχική πλάστιμη συμπεριφορά, και ο μηχανισμός του υδραυλικού ελκυστήρα να επεμβαίνει μόνο για να ελαττώνει αρμονικά την ταλάντωση αυτού, καθώς και να φρενάρει την ακτίνα καμπυλότητας του φορέα όταν πλησιάζει την στάθμη αστοχίας.

Πως θα το κατορθώσουμε αυτό ???
Από την μία θέλουμε ισχυρή πάκτωση του μηχανισμού μέσα στην γεώτρηση που αυτό επιτυγχάνετε μόνο με ισχυρή προένταση,
και από την άλλη θέλουμε μικρή ελεγχόμενη προένταση ή πάκτωση του φορέα με το έδαφος.

Απλά πρέπει να χρησιμοποιήσουμε μία άλλη μέθοδο.
α) πρώτα εξασκούμε ισχυρή προένταση μεταξύ του επιπέδου θεμελίωσης ( επιφάνεια εδάφους ) και γεώτρησης.
β) Συνδέουμε τον ήδη προτεταμένο εξέχοντα τένοντα που ευρίσκεται στο ύψος την θεμελίωσης, με έναν άλλον τένοντα ο οποίος καταλήγει στο δώμα και συνδέεται με το υδραυλικό σύστημα.
Η πίεση των υδραυλικών του εμβόλου, απλώς κρατάει τανυσμένο τον πρόσθετο τένοντα.
Όπως ξέρουμε η ακτίνα καμπυλότητας του φορέα κατά την ταλάντωση τείνει να μεγαλώσει.
Όμως το υδραυλικό σύστημα εφαρμόζει μία αντίθετη ελαστική και αυξανόμενη σταδιακά τάση στην εξωτερική ακτίνα καμπυλότητας του φέροντα που τείνει να μεγαλώσει.

Αυτό επιτρέπει στον φορέα να έχει την αρχική του πλαστιμότητα, αλλά ο υδραυλικός μηχανισμός περιορίζει τον φορέα μέσα στα όριά του πριν αστοχήσει.
Σε αυτήν την μέθοδο, δεν υπάρχει κάθετη προένταση του φορέα.
Απλά υπάρχει μία αντίσταση στο δώμα του τοιχίου αφενός, και μία άλλη αντίσταση στην άλλη μεριά της βάσης του τοιχίου, διατηρώντας την ακτίνα καμπυλότητας στα επιτρεπτά όρια.

Είναι σίγουρο ότι αυτή η μέθοδος χρειάζεται μεγάλη διατομή κάτοψης των στοιχείων, και πάκτωση των δύο άκρων αυτών για να πάρουμε καλά αποτελέσματα.

Αν θέλουμε να βελτιώσουμε την τέμνουσα βάσης, απλώς προσθέτουμε μεγαλύτερη πίεση στο υδραυλικό σύστημα.

Ως προς τους προτεταμένους φορείς από οπλισμένο σκυρόδεμα με σκελετό, τους μονολιθικούς φορείς από Ο.Σ και τοιχοποιία, και τους φορείς από σύμμεικτες και μεταλλικές κατασκευές, και σε αυτούς με κεντρικό πυρήνα αναφερθήκαμε στα προηγούμενα άρθρα.

Διαπιστώνετε και μόνοι σας ότι υπάρχει πληθώρα φορέων, ώστε να διαλέξουμε τον κατάλληλο για τον σωστό σχεδιασμό, και τις ανάγκες του κάθε έργου κατά περίπτωση, τόσο ως προς τις επιβαλλόμενες παραμορφώσεις, όσο και προς τον οικονομικό σχεδιασμό.

α)Είναι η πρώτη φορά που μπορούμε να έχουμε τον έλεγχο της πλαστιμότητας, τόσο στον δείκτη μετακίνησης του φορέα, όσο και στο δείκτης πλαστιμότητας καμπυλοτήτων.

β) Είναι η πρώτη φορά που μπορούμε να έχουμε κατάργηση ή τον πλήρη έλεγχο στις τέμνουσες των κόμβων.

γ) Είναι η πρώτη φορά που μπορούμε να έχουμε μεγαλύτερες αντοχές στην τέμνουσα βάσης.

δ) Είναι η πρώτη φορά που μπορούμε να πούμε ότι η θεμελίωση του εδάφους θα αντέξει τις θλιπτικές φορτίσεις σε μαλακά εδάφη κατηγορίας ( Χ ) χωρίς την βοήθεια πασσάλων.

ε) Είναι η πρώτη φορά που μπορούμε να πούμε ότι έχουμε τον πλήρη έλεγχο στις στρεπτικές ροπές του φέροντα, ( με προτεταμένα φρεάτια κατάλληλα τοποθετημένα σε επί μέρους θέσεις του φέροντα )

ζ) Είναι η πρώτη φορά που μπορούμε να πούμε ότι έχουμε τον πλήρη έλεγχο του κάθετου άξονα του φέροντος ως προς την διαφορά φάσης των πλακών, καθώς και ως προς την μεταφορά των ροπών των ορόφων.
Γενικά έχουμε τον πλήρη έλεγχο των παραμορφώσεων στα επιτρεπτά όρια της πλαστιμότητας του φορέα.
η) Έχουμε σεισμική μόνωση τόσο στον οριζόντιο, όσο και στον κάθετο άξονα του κτιρίου.

Βασικά έχουμε την μέθοδο και τον μηχανισμό των κατασκευών, ώστε να μπορούμε πλέον να σχεδιάσουμε τον απόλυτο αντισεισμικό φέροντα.

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
seismic


Μέλος από: 10 Αυγ 2009
Μηνύματα: 83
Περιοχή: Ios Κυκλάδες
View users profile Send email to user Visit posters website
ΜήνυμαΣτις: 09 Αυγ 2012 17:45    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Η Εδαφομηχανική και η χρησιμότητα του υδραυλικού ελκυστήρα.

Ο Πολιτικός Μηχανικός σχεδόν καθημερινά αντιμετωπίζει προβλήματα που
αφορούν το έδαφος.
Το χρησιμοποιεί σαν μέσο θεμελίωσης των τεχνικών
έργων, σαν υλικό κατασκευής επιχωμάτων, φραγμάτων και άλλων χωμάτινων
έργων, σχεδιάζει κατασκευές για να το αντιστηρίξει σε περιπτώσεις εκσκαφών ή
σηράγγων και τέλος πρέπει να επιλύσει ειδικά προβλήματα που έχουν σχέση με το
έδαφος, όπως: αποστραγγίσεις, αντλήσεις, διάδοση κραδασμών και σεισμικών
δονήσεων κλπ. Τα ανωτέρω προβλήματα και οι μέθοδοι επίλυσής τους εξαρτώνται
άμεσα από τη μηχανική συμπεριφορά των εδαφικών υλικών, που αποτελεί το
κύριο αντικείμενο της Εδαφομηχανικής ή γενικότερα της Γεωτεχνικής Μηχανικής.

Θεωρώ δεδομένο ότι σαν μηχανικοί ξέρετε να αντιμετωπίζετε τα πάρα πάνω προβλήματα με διάφορους τρόπους, όπως ξέρετε και το κόστος που μπορεί να φθάσει η κατασκευή ώστε να περιορίσετε τις παραμορφώσεις του εδάφους.

Ακόμα ξέρετε ότι οι άκαμπτοι φορείς σε διέγερση σεισμού, επιφορτίζουν με περισσότερες τάσεις την θεμελίωση, από ότι οι πλάστιμοι φορείς.
Σε περίπτωση μάλιστα όπου ο φορέας είναι ( σαν αυτόν που προτείνω εγώ )προτεταμένος με το έδαφος, ( υπερτασικός ) τότε οι επιφορτίσεις των τάσεων της θεμελίωσης είναι ακόμα μεγαλύτερες.

Ακόμα ξέρουμε ότι το έδαφος είναι γενικά ιδιαίτερα ανομοιογενές λόγω
της φυσικής του γένεσης και των επακόλουθων μετακινήσεων του φλοιού της γης,
έχει μεταβλητή σύνθεση και ανεξέλεγκτη μηχανική συμπεριφορά, οπότε αυτοί οι λόγοι μπορούν να δημιουργήσουν διαφορετικές παραμορφώσεις του εδάφους σε κάθε θεμελίωση του ιδίου φορέα, έστω και αν τα φορτία και η θεμελίωση είναι ίδια.
Δεδομένων αυτών που αναφέραμε πάρα πάνω, η χρήση του υδραυλικού ελκυστήρα θα δημιουργούσε σοβαρά προβλήματα στις κατασκευές, διότι στα χαλαρά εδάφη ο σχεδιασμός του φορέα θα περνούσε τις μέγιστες ανεκτές μετακινήσεις λόγο μεγαλύτερων παραμορφώσεων του εδάφους.

Αυτά όμως δεν συμβαίνουν με τον υδραυλικό ελκυστήρα, διότι είναι σχεδιασμένος έτσι ώστε... όχι μόνο να μην δημιουργεί προβλήματα παραμόρφωσης του εδάφους θεμελίωσης, αλλά και να τα επιλύει, μειώνοντας στο ελάχιστο το πρόβλημα της παραμόρφωσης των εδαφών της θεμελίωσης που οφείλετε τόσο στα στατικά φορτία της κατασκευής, όσο και στις μέλλουσες σεισμικές φορτίσεις.
Πως ο υδραυλικός ελκυστήρας επιτυγχάνει την ελάχιστη παραμόρφωση της βάσεως του εδάφους, από οποιαδήποτε άλλη μέθοδο

Αν είχαμε ένα συρματόσχοινο του οποίου η μία άκρη ήταν πακτωμένη με την βοήθεια μιας άγκυρας στα βάθη μιας γεώτρησης κάτω από την βάση, και στο άλλο του άκρο αφού διαπερνούσε ελεύθερο τα κάθετα στοιχεία, του εξασκούσαμε προένταση στο δώμα της κατασκευής, τότε θα είχαμε την παραμόρφωση του εδάφους αν ήταν χαλαρό.

Αυτό δεν συμβαίνει με τον υδραυλικό ελκυστήρα.
Η αιτία βρίσκεται στον μηχανισμό της άγκυρας, και συγκεκριμένα στους δύο σωλήνες που φέρει.

http://postimage.org/image/2dmcy79yc/

Αυτοί οι σωλήνες έχουν διαφορετική διάμετρο, έτσι ώστε ο ένας να ολισθαίνει μέσα στον άλλον.
Ο εσωτερικός σωλήνας είναι συνδεδεμένος με τον τένοντα.
Ο εξωτερικός σωλήνας που είναι και ο υποδοχέας του τένοντα, καταλήγει κάτω από την βάση, και αυτός είναι η αιτία που η βάση δεν υποχωρεί όταν το έδαφος παραμορφωθεί.

Αυτός ο σωλήνας όταν δέχεται τα φορτία της βάσης, τείνει να υποχωρήσει κάθετα.

Αδυνατεί όμως να υποχωρήσει κάθετα, διότι είναι συνδεδεμένος με πίρους και μπάρες πυραμοειδούς μορφής, στο άλλο άκρο του, οι οποίες μπάρες μεταβιβάζουν τα φορτία της βάσης στα πρανή της γεώτρησης.
Αυτή η μεταβίβαση των φορτίων μέσο των μπαρών, υποβοηθείται και από τις άλλες πυραμοειδούς μορφής μπάρες οι οποίες είναι ανεστραμμένες και συνδεδεμένες με τον εσωτερικό σωλήνα του τένοντα.
Κατ αυτόν τον τρόπο, οι μπάρες σπρώχνουν κατά ένα σημείο από διαφορετική κατεύθυνση, και αποκλείουν την ολίσθηση στα πρανή της γεώτρησης.
Η πάνω σωλήνα μεταβιβάζει τάσεις της βάσης στα πρανή της γεώτρησης, και η κάτω σωλήνα μεταβιβάζει τάσεις του τένοντα στα πρανή της γεώτρησης.

http://postimage.org/image/2mlql3ag4/

Δηλαδή έχουμε ένα νέο είδος πασσάλου τριβής, με το επιπλέον πλεονέκτημα την συνεχή τάση στα πρανή της γεώτρησης που εφαρμόζεται μέσο του τένοντα και των στατικών φορτίων του φέροντα.

Ξέρουμε ότι το σύνολο σχεδόν των παραμορφώσεων του εδάφους
είναι μή-αντιστρεπτές, δηλαδή δεν αναιρούνται με την απομάκρυνση του αιτίου
που τις προκάλεσε
Οι πάσσαλοι τριβής αφού εισχωρήσουν στο έδαφος δημιουργούν παραμορφώσεις που είναι μη - αντιστρεπτές, που αυτό σημαίνει μικρή τριβή όταν δέχονται καθοδικά φορτία, και μηδαμινή τριβή και αντίσταση σε ανοδικά φορτία.

http://postimage.org/image/14tj1webo/

Ο υδραυλικός ελκυστήρας έχει το πλεονέκτημα ( λόγο συνεχών τάσεων στα πρανή της γεώτρησης )
να έχει μεγαλύτερες πλάγιες τριβές από ότι ο πάσσαλος τριβής.

Είναι σαφές ότι τα φορτία της
κατασκευής που ασκούνται στο έδαφος στα σημεία έδρασης των στοιχείων
θεμελίωσης μεταφέρονται και πέραν των σημείων αυτών με την ανάπτυξη τάσεων, οι
οποίες προκαλούν παραμόρφωση του εδάφους στην περιοχή της θεμελίωσης. Όσο
αυξάνει η απόσταση από τα σημεία έδρασης, οι αναπτυσσόμενες τάσεις μειώνονται
και συνεπώς μειώνονται και οι απαιτήσεις ανθεκτικότητας του εδάφους.
Σε όλες τις περιπτώσεις, όμως, οι πρόσθετες τάσεις λόγω των φορτίων της
κατασκευής είναι σημαντικές μόνο σε μια περιοχή κάτω από τα σημεία έδρασης
(ζώνη επιρροής).

Με τον υδραυλικό ελκυστήρα έχουμε για πρώτη φορά δύο ζώνες επιρροής.
α) μία κάτω από την βάση.
β) μία προς τα πρανή της γεώτρησης.

Κατ αυτόν τον τρόπο έχουμε διπλή στήριξη της βάσης στο έδαφος.

Ακόμα η συμπύκνωση της χαλαρότητας του εδάφους από τις τάσεις του υδραυλικού μηχανισμού, προσφέρουν καλύτερη θεμελίωση.
Όταν μάλιστα τοποθετήσουμε και άλλους ελκυστήρες κοντά στον κύριο ελκυστήρα, τότε η βελτίωση του εδάφους είναι σημαντική διότι η ζώνη επιρροής δεν υφίσταται μόνο στα πρανή της γεώτρησης, αλλά καθ όλο το εμβαδόν του φέροντα, και πέραν από αυτόν.

_________________
Ο εχθρός του καλού το ποιο καλό. http://antiseismic-systems.com/
deninho
Super Moderator

Μέλος από: 17 Ιαν 2004
Βοηθήματα: 1
Νέα: 3
Μηνύματα: 256+

Περιοχή: σ'άλλη διάσταση
View users profile Visit posters website
flickr facebook twitter 
ΜήνυμαΣτις: 14 Αυγ 2012 18:42    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

με ποια λογική έρχεσαι και μας γράφεις όλα αυτά τα κατεβατά, σε ένα φόρουμ, που ΔΕΝ έχει σχέση με τις οικοδομές, τα χτισίματα, ή έστω στατικές μελέτες; Ούτε καν φόρουμ σχετικής σχολής δεν είμαστε.

Τρως πόδι από το ένα φόρουμ υπολογιστών, και έρχεσαι στο άλλο; Μετά θα πας στο ινσόμνια ή στο adslgr.com; Μήπως στο fmgreece που μιλάνε για χτίσιμο (ομάδων);

_________________
Δημιουργώ - Graphic Design + 3d Design & Architectural Visualization
mechpanos
Honorary Member

Μέλος από: 20 Μαρ 2003
Νέα: 1
Μηνύματα: 256+

Περιοχή: Athens - Pyrgos
View users profile Send email to user Visit posters website
blog 
ΜήνυμαΣτις: 16 Αυγ 2012 09:48    Θέμα: Απάντηση με παράθεση  Mark this post and the followings unread

Έλα ντε... κι εγώ δεν μπορώ να το καταλάβω. Τι feedback μπορεί να πάρει από εδώ, πέραν της δημοσιοποίησης κάπου;

Φίλε seismic πιστεύω ότι είναι καλύτερο να ποστάρεις στο michanikos.gr όπου και οι συνάδελφοι πολιτικοί μηχανικοί θα δείξουν μεγαλύτερο ενδιαφέρον για την προτεινόμενη τεχνολογία.

_________________
Πύργος θεός Πανηλειακός!!
Εμφάνιση Μηνυμάτων:   
Εισαγωγή νέου Θέματος   Απάντηση στο Θέμα Σελίδα 5 από 8 [111 Μηνύματα] Σελίδα:  Προηγούμενο  1, 2, 3, 4, 5, 6, 7, 8 Επόμενο
Mark the topic unread :: Προηγούμενο θέμα :: Επόμενο θέμα
 Forum index » Η/Υ, Τεχνολογία & Εφαρμογές » Internet, πλοήγηση, συνδέσεις και τηλεφωνία » Σας παρουσιάζω την σελίδα μου


Σχετικά θέματα
 Θέματα   Απ/σεις   Αποστολέας   Τελευταίο μήνυμα 
www.vthis.gr Νέα ιστοσελίδα 0 pcbmaniac 01 Ιαν 2016 09:35
pcbmaniac Εμφάνιση τελευταίου μηνύματος
Domain Name Deals - dnd.gr 0 webdevgr 14 Σεπ 2015 09:03
webdevgr Εμφάνιση τελευταίου μηνύματος
 
Τώρα είναι 03 Δεκ 2016 23:46 | All times are UTC + 2


Email This Page to Someone! add to Favorites

     Powered by p h p B B © 2001,2005 p h p B B Group
Για άμεση επικοινωνία με τον διαχειριστή του freestuff.gr στο email: freestuff.gr(παπάκι)gmail.com


Copyright © 1999-2013 Freestuff.gr All Rights Reserved  
Version Aegean, designed by N. Tsaganos